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Abstract

For a homogeneous anisotropic and linearly elastic solid, the general expression of Young�s modulus EðnÞ, em-

bracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the

evaluation of those directions n at which EðnÞ attains stationary values. Cubic and transversely isotropic symmetry

classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of

these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable

combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material

parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic

solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real

materials are shown and graphical representations of the dependence of Young�s modulus on direction n are given as

well.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The macroscopic mechanical behavior of a solid is strongly conditioned by its microstructural proper-

ties. For most macroscopically isotropic materials which are commonly employed in engineering practice, it

is enough to specify only two elastic coefficients in order to give a complete description of the material.

However, many materials cannot be considered as isotropic; among these (at the microscale level) crystals

and polycrystals, the latter constituted by grains individually anisotropic, or (at macroscale level) com-

posites and fiber reinforced materials. Indeed, many man-made and naturally occurring substances appear

as aggregates of crystals, or polycrystals, with non-random distribution of orientations (texture). In such
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textured polycrystals, also the macroscopic properties are anisotropic, i.e., directionally dependent. In

particular, the anisotropy properties in a polycrystal aggregate depend both on the texture of the poly-

crystal itself and also on the inherent anisotropy of the single-crystal.

The anisotropy of a physical property is generally restricted by certain symmetry considerations, which
partly follow from the symmetry elements of the underlying material structure. Symmetry considerations

are in fact of paramount concern in the treatment of the directionality of material properties.

A basic structural element, common to most materials, is the crystal structure. Thus, the basic form of

structural symmetry in an aggregate is that contained in the crystal structure.

The effects of crystal symmetry are exhaustively covered in Nye (1957) and in Ting (1996).

As far as elasticity is concerned, in anisotropic solids it is then necessary to specify all the independent

elements of the elastic tensor C, whose number can range from 3 (cubic system) to 21 (triclinic system), in

dependence on the elastic symmetries that the solid exhibits (Gurtin, 1972). The macroscopic behavior of a
solid is then strongly related to its anisotropic properties, which can reveal, in some materials, an aniso-

tropy degree decidedly non-negligible and in some cases so extreme to suggest the proximity of material

instability.

Single crystals are classified into 32 classes, on the basis of homogeneous physical properties; it has been

shown (Smith and Rivlin, 1958) that these classes reveal 11 (plus isotropy) different types of elastic energy,

often indicated with the notations C1;C2; . . . ;C11 (Coleman and Noll, 1964). Then, in linear elasticity, the

11 types of elastic energy reduce to 9 (Huo and Del Piero, 1991) and the relevant anisotropic symmetry

classes to 8, including isotropy (Forte and Vianello, 1996; Chadwick et al., 2001). On the basis of such
classification it is spontaneous to evaluate the behavior of the engineering elastic constants for the various

elastic symmetries.

In the present work, the directional dependence of Young�s modulus is studied with reference to the

strongest elastic symmetries, namely the cubic and transversely isotropic (hexagonal) symmetries. Pio-

neering works in this direction are those by Goens (1933) and Schmid and Boas (1935), where some two-

dimensional representations of the directional dependence of the Young�s modulus and of the shear

modulus, mostly based on experimental investigations, are given. In particular, Schmid and Boas (1935)

from some tests on real materials provide effective pictures of plaster models for the three-dimensional
surface generated by the Young�s modulus.

A few planar analytically deduced drawings similar to the previous ones are also presented by Wooster

(1949). The results are also referenced in classical textbooks (e.g., Nye, 1957). The case of cubic symmetry

has been more recently re-discussed by Hayes and Shuvalov (1988), and some features about the general

behavior of cubic solids are also investigated in Boulanger and Hayes (1995).

The aim of this paper is to theoretically investigate the elastic response of anisotropic solids (cubic and

transversely isotropic ones, in particular), to analytically deduce a rational classification in terms of

Young�s modulus, and to recognize the appearance of such categories among real materials. This approach
could be usefully applied for controlling the mechanical response of man-made materials when stiffness

requirements are of concern.

The problem is formulated, in the most general form, in Section 2 and dealt with as a constrained ex-

tremum problem for the determination of those directions n along which Young�s modulus attains its

stationary values. The formulation is general and expresses EðnÞ as a function of the components of the unit

vector n, that labels a direction, and of the Cartesian components of the fourth-order elastic tensor. The

problem is equivalent to that, formulated by Ostrowska-Maciejewska and Rychlewski (2001), of finding the

extrema of the stored elastic energy density for a solid under uniaxial tension.
In Section 3, the problem is then specialized to the case of cubic symmetry, where two different categories

of behavior are pointed out, each characterized by the sign of a material parameter b1, responsible of the

degree of anisotropy. For practical reasons and accepted custom, in what follows, the usual Voigt�s con-
tracted representation of stress, strain and elastic tensors is adopted (Gurtin, 1972). Although this notation
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provides a vector and matrix representation of the tensors which is physically meaningful, it shows,

nonetheless, a loss of tensorial character. An alternative formulation (Walpole, 1984) is also mentioned,

leading to the same results, but the Voigt�s choice is preferred on the basis of its well-established use in

current literature (Nye, 1957; Hearmon, 1961; Fedorov, 1968; Lekhnitskii, 1981; Ting, 1996). For the cubic
case, the sign of the material parameter b1 (or the value of an analogous, but dimensionless, parameter Bcub)

fixes the directions along which the Young�s modulus attains its absolute maxima and minima. It is shown

that these directions can be aligned either with the edges of a cube or along its diagonals. Directions of

relative extrema of EðnÞ do exist as well and are here characterized. Several examples of real materials,

compounds and alloys corresponding to positive and negative values of material parameter b1 are then

given. Among these real behaviors, the effect on Young�s modulus of some extreme anisotropy degrees is

also shown.

Hexagonal symmetry, and in particular that of a transversely isotropic solid, is then considered in
Section 4. In this case two material parameters, a2 and b2 (or their dimensionless counterparts Ahex and

Bhex), are defined and adopted as a measure of the level of anisotropy. In this way, the sign of a2 along with

that of the difference ðb2 � a2Þ allow to distinguish the solutions of the problem in four categories of be-

havior. For each of such classes, it is shown that Young�s modulus attains its extremum values either on the

isotropy plane, or on the isotropy axis or again on the generic parallel of the surface (of revolution)

generated by EðnÞ. Moreover, it is shown that the obtained solutions must be restricted by suitable feasi-

bility conditions on the elastic constants, in order to maintain physical sense. Finally, also for transversely

isotropic solids, all the treated cases are related with real materials, i.e., compounds or alloys that satisfies
the previously obtained conditions. The directional dependence of Young�s modulus is then shown by

means of suitable graphical representations.

Information and data for anisotropic real materials can be easily found in literature, both in classical

texts and tables (Huntington, 1958; Edington, 1974) and in more recent treatises (Kocks et al., 2000; Levy

et al., 2001). Data for the examples presented in this work are checked with these references, but are

principally taken from the largest source of information available (Landolt and B€oornstein, 1992).

2. Problem formulation

A linearly elastic, homogeneous and anisotropic solid, with positive definite stored energy, is considered.

The anisotropic elastic character of the material is obviously reflected on Young�s modulus E, which is

therefore a function of direction in the solid. In the following, for any unit vector n, the modulus will be

expressed as the function E ¼ EðnÞ. The problem considered here consists in the evaluation of the behavior

of that function and, in particular, in the explicit computation of those directions n for which EðnÞ is

stationary, followed by a discussion of these critical points.

The type of elastic anisotropy of the material, that is the symmetry group to which it belongs (Gurtin,
1972), is reflected on the form of the fourth-order elasticity tensor C, here always supposed to be positive

definite.

In order to obtain the explicit expression of Young�s modulus as a function of the direction, the con-

tinuum is subjected to a unit dipole acting in the direction defined by the unit vector n. The stress field

corresponding to the unit dipole, in absence of body forces, is given by:

r ¼ n� n ð1Þ

and is associated, through the elasticity law, to the strain field:

� ¼ S½r� ¼ S½n� n�: ð2Þ
In Eq. (2) S ¼ C�1 indicates the positive definite fourth-order compliance tensor.
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In view of characterizing the relationship which links the stress and the strain fields, in the direction n,
the strain tensor (2) is projected along that direction. The expression which defines Young�s modulus as a

function of direction n follows immediately:

�ðnÞ ¼ 1

EðnÞ ¼ n� n � S½n� n�: ð3Þ

If a Cartesian orthogonal reference frame Ox1x2x3 is considered, then expression (3) can be written in index

form as:

1

EðnÞ ¼ Sijhkninjnhnk; ð4Þ

where indices i, j, h, k range from 1 to 3, and the usual rule of sum over a repeated subscript is assumed.
Notice that the expression of 1=EðnÞ corresponds to that of the stored elastic energy (see Ostrowska-

Maciejewska and Rychlewski, 2001) when, as in the present case, a uniaxial stress state of unit modulus is

considered. This allows for the interpretation of the directions corresponding to extrema of Young�s
modulus as directions of maxima and minima for the stored energy function.

In (4) the Sijhk values represent the Cartesian components of the elastic compliance tensor S in the given

reference frame, and are subjected to some usual restrictions. First, they must be subordinate to the minor

symmetries Sijhk ¼ Sjihk ¼ Sijkh resulting from the symmetry of the stress and strain tensors. Secondly, also

the major symmetry Sijhk ¼ Shkij holds, as a consequence of the requirement that no work be produced by an
elastic material in a closed loading cycle.

In order to evaluate the direction n for which the modulus EðnÞ––or its reciprocal 1=EðnÞ––attains ex-
treme values, the following Lagrangian function is introduced:

Lðn; kÞ ¼ n� n � S½n� n� þ kðn � n� 1Þ; ð5Þ

where k is a Lagrangian multiplier associated to the constraint n � n ¼ 1 over the unit vector n. In terms of

components, the Lagrangian function is then written as:

Lðni; kÞ ¼ Sijhkninjnhnk þ kðnini � 1Þ: ð6Þ

The stationarity conditions for the Lagrangian function L are thus:

oLðn; kÞ
on

¼ 0

oLðn; kÞ
ok

¼ 0

8>><
>>: or; in index notation

oLðni; kÞ
onj

¼ 0

oLðni; kÞ
ok

¼ 0

8>><
>>: ð7Þ

and can be explicitly written, making use of the symmetries on S, as:

2Sijhknjnhnk þ kni ¼ 0

nini � 1 ¼ 0:

�
ð8Þ

In view of more tractable computations, a change of notation is now performed. The need to evaluate the

three-dimensional Hooke�s law, i.e., �ij ¼ Sijhkrhk, in a convenient fashion, results in a number of notational
conventions (Mehrabadi and Cowin, 1990; Nadeau and Ferrari, 1998), that allow to relate the components

of strain, stress and elasticity tensors.
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First, for a full anisotropic solid, the following matrix representation can be constructed:

r11

r22

r33

r23

r31

r12

r32

r13

r21

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

S1111 S1122 S1133 S1123 S1131 S1112 S1132 S1113 S1121
S2211 S2222 S2233 S2223 S2231 S2212 S2232 S2213 S2221
S3311 S3322 S3333 S3323 S3331 S3312 S3332 S3313 S3321
S2311 S2322 S2333 S2323 S2331 S2312 S2332 S2313 S2321
S3111 S3122 S3133 S3123 S3131 S3112 S3132 S3113 S3121
S1211 S1222 S1233 S1223 S1231 S1212 S1232 S1213 S1221
S3211 S3222 S3233 S3223 S3231 S3212 S3232 S3213 S3221
S1311 S1322 S1333 S1323 S1331 S1312 S1332 S1313 S1321
S2111 S2122 S2133 S2123 S2131 S2112 S2132 S2113 S2121

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

�11
�22
�33
�23
�31
�12
�32
�13
�21

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð9Þ

Nevertheless, notation (9) does not make use of the minor and major symmetries of tensor S. If these

symmetries are considered, the extended formulation (9) can be abandoned and more convenient repre-

sentations of Hooke�s law are possible, which reduce the size of matrices and vectors. Among these, two are

more widely adopted in the literature. The first, known as Voigt�s notation (Love, 1944), reads:

r11

r22

r33

r23

r31

r12

0
BBBBBB@

1
CCCCCCA

¼

S1111 S1122 S1133 2S1123 2S1131 2S1112
S1122 S2222 S2233 2S2223 2S2231 2S2212
S1133 S2233 S3333 2S3323 2S3331 2S3312
2S1123 2S2223 2S3323 4S2323 4S2331 4S2312
2S1131 2S2231 2S3331 4S2331 4S3131 4S3112
2S1112 2S2212 2S3312 4S2312 4S3112 4S1212

0
BBBBBB@

1
CCCCCCA

�11
�22
�33
2�23
2�31
2�12

0
BBBBBB@

1
CCCCCCA
: ð10Þ

The presence of the multiplicative factor 2 applied to the shearing strains results from the exploitation of

the minor symmetries. Moreover, the position of such a factor allows the stress and strain vectors to assume

physical sense.

A second possible representation, poor of physical meaning but more attractive than the previous one by

virtue of its tensorial properties, is the linear transformation in six dimensions (Walpole, 1984; Rychlewski,

1984):

r11

r22

r33ffiffiffi
2

p
r23ffiffiffi

2
p

r31ffiffiffi
2

p
r12

0
BBBBBB@

1
CCCCCCA

¼

S1111 S1122 S1133
ffiffiffi
2

p
S1123

ffiffiffi
2

p
S1131

ffiffiffi
2

p
S1112

S1122 S2222 S2233
ffiffiffi
2

p
S2223

ffiffiffi
2

p
S2231

ffiffiffi
2

p
S2212

S1133 S2233 S3333
ffiffiffi
2

p
S3323

ffiffiffi
2

p
S3331

ffiffiffi
2

p
S3312ffiffiffi

2
p

S1123
ffiffiffi
2

p
S2223

ffiffiffi
2

p
S3323 2S2323 2S2331 2S2312ffiffiffi

2
p

S1131
ffiffiffi
2

p
S2231

ffiffiffi
2

p
S3331 2S2331 2S3131 2S3112ffiffiffi

2
p

S1112
ffiffiffi
2

p
S2212

ffiffiffi
2

p
S3312 2S2312 2S3112 2S1212

0
BBBBBB@

1
CCCCCCA

�11
�22
�33ffiffiffi
2

p
�23ffiffiffi

2
p

�31ffiffiffi
2

p
�12

0
BBBBBB@

1
CCCCCCA
: ð11Þ

Note that in last notation the stress and strain tensors have been mapped into the six-dimensional space in

the same manner. The difference between definitions (10) and (11) may appear shallow, but it is not indeed.

It has been proved (Mehrabadi and Cowin, 1990) that the 6� 6 matrix in (11) contains the components of a

second-order tensor in the six-dimensional space, whereas it is well known (Nye, 1957; Hearmon, 1961;
Fedorov, 1968) that the 6� 6 matrix in (10) does not contain the components of a second-order tensor, and

must be exclusively understood as a matrix.

However, both in classical and in the majority of modern literature on anisotropic solids, the choice (10)

results to be the most widespread, despite its lack of tensorial character, and therefore it will be also

adopted here. Anyway, this choice does not affect the results which follow.

In view of defining the material symmetries that will be considered in this paper, a special reference

system is introduced. A �principal� reference system for a material symmetry is defined as a system of co-

ordinates in which the elasticity tensor shows the fewest number of independent non-zero components. An
exception is the case of full anisotropy, where this definition is meaningless.
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The material symmetries considered here are two of those symmetries such that, when the solid is

subjected to a unit dipole acting along a material principal direction, no shear strains arise. The material

symmetries fulfilling this requirement are those corresponding to the groups (Coleman and Noll, 1964;

Gurtin, 1972; Huo and Del Piero, 1991): C6 � C7 (cubic symmetry, characterized by three elastic con-
stants), C10 � C11 (hexagonal symmetry, five elastic constants: transverse isotropy), C5 (tetragonal, six

elastic constants) and C3 (orthorhombic, nine elastic constants: orthotropy).

In Sections 3 and 4, the behavior of Young�s modulus for cubic and hexagonal material symmetries will

be examined in detail, by following an order where an increasing number of independent elastic material

constants is considered.

3. Cubic symmetry

The cubic case represents the symmetry with the lesser number, 3, of independent elastic constants

among the crystallographic classes, excluding, of course, the case of isotropy. It corresponds to the sym-

metry group C6 coinciding, in the case of a symmetric S (hyperelasticity), with the symmetry group C7

(Huo and Del Piero, 1991). For the symmetry under investigation, the matrix representation of the elas-

ticity tensor in (9), written in the principal reference system, and taking into account also the symmetries on

S has this simpler form:

S1111 S1122 S1122 0 0 0 0 0 0

S1122 S1111 S1122 0 0 0 0 0 0

S1122 S1122 S1111 0 0 0 0 0 0

0 0 0 S2323 0 0 S2323 0 0

0 0 0 0 S2323 0 0 S2323 0

0 0 0 0 0 S2323 0 0 S2323
0 0 0 S2323 0 0 S2323 0 0
0 0 0 0 S2323 0 0 S2323 0

0 0 0 0 0 S2323 0 0 S2323

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð12Þ

As explained in Section 2, here and in the following it is preferable to express the components of the elastic
compliance tensor S in the Voigt�s contracted notation which allows to construct, in the principal material

Cartesian reference frame, the elastic matrix in the form:

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

0
BBBBBB@

1
CCCCCCA
; ð13Þ

where the reduced elastic coefficients are defined as s11 ¼ S1111 ¼ S2222 ¼ S3333, s12 ¼ S1122 ¼ S1133 ¼ S2233,
s44 ¼ 4S2323 ¼ 4S3131 ¼ 4S1212 (see (10) and Nye, 1957; Hearmon, 1961; Sirotin and Chaskolka€ııa, 1984).

Having assumed the existence of a positive definite elastic energy, some restrictions must be satisfied by

the components of the reduced matrix (13). Therefore, application of Jordan�s lemma to (13) leads to the

following inequalities:

s11 > 0; ð14Þ

� s11
2

< s12 < s11; ð15Þ
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s44 > 0: ð16Þ

In terms of contracted notation, expression (4) for 1=EðnÞ gives:
1

EðnÞ ¼ s12 þ
1

2
s44 þ

1

2
ð2s11 � 2s12 � s44Þ n41



þ n42 þ n43

�
ð17Þ

which, making use of the identity:

n41 þ n42 þ n43 ¼ 1� 2 n21n
2
2



þ n21n

2
3 þ n22n

2
3

�
ð18Þ

can be rewritten as:

1

EðnÞ ¼ s11 � ð2s11 � 2s12 � s44Þ n21n
2
2



þ n21n

2
3 þ n22n

2
3

�
: ð19Þ

As Eq. (19) shows, the Young�s modulus for the cubic case depends on all three elastic constants s11, s12 and
s44. For convenience, relation (19) is rewritten in the following form:

1

EðnÞ ¼ s11 � b1 n21n
2
2



þ n21n

2
3 þ n22n

2
3

�
; ð20Þ

where a new coefficient, depending on material properties only,

b1 :¼ 2s11 � 2s12 � s44 ð21Þ

has been defined. Since the eigenvalues of (13) are, as one can easily check, k1 ¼ k2 ¼ s11 � s12, k3 ¼
s11 þ 2s12 and k4 ¼ k5 ¼ k6 ¼ s44, then the material parameter b1 can also be written in this way

b1 ¼ 2k1 � k4 ð22Þ

and thus represents an invariant quantity associated with the material. It should be noticed that b1 is related

to the dimensionless Zener anisotropy factor, frequently used in the literature about cubic materials (Zener,

1955; Edington, 1974; Kelly et al., 2000):

Bcub :¼
2ðs11 � s12Þ

s44
ð23Þ

by the following relationship:

b1 ¼ s44ðBcub � 1Þ: ð24Þ

It should be also noticed that for b1 ¼ 0 (i.e., Bcub ¼ 1) the isotropic case is recovered. Moreover, the co-

efficient b1 is not sign restricted, but, by virtue of inequalities (14)–(16), it is, in any case, subjected to the

restrictions:

�s44 < b1 < 3s11: ð25Þ

Eqs. (24) and (25) provide the corresponding bounds on the dimensionless anisotropy factor Bcub:

0 < Bcub < 3
s11
s44

þ 1: ð26Þ

Definitions of alternate parameters to Bcub or to b1 are given in the literature (Nadeau and Ferrari, 2001).

As pointed out there, however, all these parameters assume a range (either bounded or not) of values, where

the isotropic case does correspond to neither the minimum nor to the maximum, but to a point internal

to the range itself: see, for instance, bounds (25) and (26). Therefore, they suffer of a lack of uniqueness
in defining the �absolute� degree of anisotropy. To overcome this ambiguity, Nadeau and Ferrari (2001)
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introduce a new family of anisotropy parameters, valid for all elastic symmetry classes, which vanish in

correspondence to isotropy, and assume otherwise only positive values.

Nevertheless, being a classification of cubic materials the objective of this section, it becomes crucial to

distinguish among different anisotropy-induced behaviors. As it will appear soon, �bilateral� parameters,
like Bcub and b1, are both effective and precisely needed. Indeed, definition (21) allows for the following

mechanical interpretation.

By virtue of inequalities (14)–(16) one has ðs11 � s12Þ > 0 and s44 > 0; therefore, for relatively low values

of s44 it follows that b1 > 0, while relatively high values of s44 give b1 < 0. This means that the material

parameter b1 can be thought of as a measure of the relative shear stiffness of the material. In other words,

the following classification holds (see also Pedersen, 1989, for similar definitions referred to orthotropic

bodies in plane elasticity):

b1 > 0: cubic material with high relative shear stiffness

b1 < 0: cubic material with low relative shear stiffness:

For the cubic symmetry and in contracted notation, the Lagrangian function (6) takes the form:

L ¼ s11 � b1 n21n
2
2



þ n21n

2
3 þ n22n

2
3

�
þ k n21



þ n22 þ n23 � 1

�
ð27Þ

and the relevant explicit stationarity conditions (8) read:

� b1 n22 þ n23

 �

þ k
� �

n1 ¼ 0

� b1 n21 þ n23

 �

þ k
� �

n2 ¼ 0

� b1 n21 þ n22

 �

þ k
� �

n3 ¼ 0

n21 þ n22 þ n23 ¼ 1:

8>>>><
>>>>:

ð28Þ

Eq. (28) provide the necessary conditions for (20) to be stationary. In order to find all the directions

n corresponding to critical points of 1=EðnÞ, let�s define an orthonormal basis fe1; e2; e3g in the three-

dimensional space and denote by n1, n2, n3 the components of the unit vector n ¼ n1e1 þ n2e2 þ n3e3. Then,
one can distinguish three different situations.

First, if n is directed along a coordinate axis (i.e., if n ¼ �e1, or n ¼ �e2 or n ¼ �e3) then the following

obvious solutions are obtained, respectively:

ð1Þ

n21 ¼ 1

n22 ¼ n23 ¼ 0

k ¼ 0
1

E
¼ s11

8>>><
>>>:

ð2Þ

n22 ¼ 1

n21 ¼ n23 ¼ 0

k ¼ 0
1

E
¼ s11

8>>><
>>>:

ð3Þ

n23 ¼ 1

n21 ¼ n22 ¼ 0

k ¼ 0
1

E
¼ s11

8>>><
>>>:

ð29Þ

and, in these directions, the Young�s modulus attains the same value E ¼ 1=s11, in agreement with the

structure of the elastic matrix (13).

Second, if the unit vector n has two non-vanishing components (i.e., if n ¼ n2e2 þ n3e3, or n ¼ n1e1 þ n3e3
or n ¼ n1e1 þ n2e2) it belongs to one of the coordinate planes. The corresponding solutions are, respec-

tively:

ð4Þ

n21 ¼ 0

n22 ¼ n23 ¼
1

2

k ¼ b1

2
1

E
¼ s11 �

b1

4

8>>>>>>><
>>>>>>>:

ð5Þ

n22 ¼ 0

n21 ¼ n23 ¼
1

2

k ¼ b1

2
1

E
¼ s11 �

b1

4

8>>>>>>><
>>>>>>>:

ð6Þ

n23 ¼ 0

n21 ¼ n22 ¼
1

2

k ¼ b1

2
1

E
¼ s11 �

b1

4

8>>>>>>><
>>>>>>>:

ð30Þ
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and the Young�s modulus depends also on the off-diagonal element s12 of (13) and on the shear modulus s44,
through the parameter b1.

It should be noticed that in the last three cases the values of n2i (i ¼ 1, 2, 3) are independent of the elastic

constants, and therefore the admissibility conditions 06 n2i 6 1 are automatically guaranteed. On the other
hand, the positivity condition on 1=E is a priori satisfied if the parameter b1 is expressed through Eq. (21),

taking into account inequalities (14)–(16). Conversely, the condition 1=E > 0 implies the restriction

b1 < 4s11, weaker than the upper bound (25).

Finally, if n is a unit vector generically oriented, with all non-vanishing components ðn ¼ n1e1 þ
n2e2 þ n3e3Þ, the solution of (28) reads:

ð7Þ

n21 ¼ n22 ¼ n23 ¼
1

3

k ¼ 2b1

3
1

E
¼ s11 �

b1

3
:

8>>>>><
>>>>>:

ð31Þ

Once again, the Young�s modulus depends on the elastic parameter s11 and on the anisotropy factor b1.
Also in this situation, the values n2i (i ¼ 1, 2, 3) are independent of the elastic coefficients, and the ad-

missibility conditions 06 n2i 6 1 are satisfied by the solution. The positivity condition 1=E > 0 is guaranteed

beforehand if the b1 factor is given through Eq. (21); on the contrary, the request 1=E ¼ s11 � b1=3 > 0

implies b1 < 3s11, which coincides with the upper inequality restraint (25).

In conclusion, assuming i, j, k ¼ 1, 2, 3 with i 6¼ j 6¼ k, the following statements hold:

1. n2i ¼ 1, n2j ¼ n2k ¼ 0, i.e., if the unit vector nmatches in turn each coordinate axis. In this case the solution

corresponds to six stationary points, each according to ni ¼ �1 (i ¼ 1, 2, 3), and the value of Young�s
modulus is such that:

1

E
¼ s11; ð32Þ

2. n2i ¼ n2j ¼ 1=2, n2k ¼ 0, then the unit vector n is directed in turn along the bisectors of each coordinate

plane. Therefore the 12 stationary points are those for which ni ¼ �1=
ffiffiffi
2

p
, nj ¼ �1=

ffiffiffi
2

p
, nk ¼ 0,

ði; j; k ¼ 1; 2; 3; i 6¼ j 6¼ kÞ, and the Young�s modulus is given by:

1

E
¼ s11 �

b1

4
¼ 2s11 þ 2s12 þ s44

4
; ð33Þ

3. n2i ¼ n2j ¼ n2k ¼ 1=3; the solutions correspond to the case of unit vector n that trisects each octant of the

coordinate system. This case produces eight stationary points: ni ¼ �1=
ffiffiffi
3

p
, nj ¼ �1=

ffiffiffi
3

p
, nk ¼ �1=

ffiffiffi
3

p
(i,

j, k ¼ 1, 2, 3, i 6¼ j 6¼ k) and the elastic modulus is such that:

1

E
¼ s11 �

b1

3
¼ s11 þ 2s12 þ s44

3
: ð34Þ

Directions for local extrema of Young�s modulus in solids with cubic symmetry (under uniaxial tension)

have been obtained in a different way, looking for stationary values of the stored elastic energy, by Os-

trowska-Maciejewska and Rychlewski (2001).

From Eqs. (32)–(34), the solutions can be ordered as follows:

if b1 > 0 then: s11 > s11 �
b1

4
> s11 �

b1

3
; ð35Þ
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if b1 < 0 then: s11 < s11 �
b1

4
< s11 �

b1

3
: ð36Þ

It is worth noting that in both cases the solutions with 1=E ¼ s11 � b1=4 (corresponding to the directions of

n that bisect the coordinate planes) are always relative minima or relative maxima, for b1 greater or less

than zero, respectively. Consequently, by making use of Eqs. (32) and (34), it is possible to assert that:

b1 > 0 :
Emax ¼

3

s11 þ 2s12 þ s44

Emin ¼
1

s11
;

8><
>: ð37Þ

b1 < 0 :
Emax ¼

1

s11

Emin ¼
3

s11 þ 2s12 þ s44

8><
>: ð38Þ

where Emin ¼ ð1=EÞ�1

max and Emax ¼ ð1=EÞ�1

min. Moreover, it can be easily verified that the following relation
between maximum and minimum values of Young�s modulus holds (see also Hayes and Shuvalov, 1988):

1

E

� �
max

� 1

E

� �
min

¼ jb1j
3

:

The relationships between the elements of matrix representation of tensor S and those of matrix repre-

sentation of tensor C in Voigt�s contracted notation are:

s11 ¼
c11 � c12

c211 þ c11c12 � 2c212
; ð39Þ

s12 ¼
c12

c211 þ c11c12 � 2c212
; ð40Þ

s44 ¼
1

c44
; ð41Þ

where the following definitions hold: c11 ¼ C1111 ¼ C2222 ¼ C3333, c12 ¼ C1122 ¼ C1133 ¼ C2233 and

c44 ¼ C2323 ¼ C3131 ¼ C1212 (Nye, 1957; Hearmon, 1961; Sirotin and Chaskolka€ııa, 1984). In such a way, Eqs.

(37) and (38) can be rewritten, in terms of stiffness coefficients, as:

b1 > 0 :
Emax ¼

3ðc11 þ 2c12Þc44
c11 þ 2c12 þ c44

Emin ¼
ðc11 � c12Þðc11 þ 2c12Þ

c11 þ c12
;

8>><
>>: ð42Þ

b1 < 0 :
Emax ¼

ðc11 � c12Þðc11 þ 2c12Þ
c11 þ c12

Emin ¼
3ðc11 þ 2c12Þc44
c11 þ 2c12 þ c44

:

8>><
>>: ð43Þ

Therefore, relations (37) and (38) define two categories of materials in the frame of the cubic system. To

the first category, corresponding to the case b1 > 0 (that is, when Bcub > 1) belong metallic materials

1722 A. Cazzani, M. Rovati / International Journal of Solids and Structures 40 (2003) 1713–1744



like Pb, Cu, Ag, Au, Pd, Ni, Ge, Al (ordered here for decreasing values of the anisotropy factor Bcub),

alkaline metals (Li, Na, K, Rb), Si and C in its crystalline state (diamond) and several compounds and

alloys (Landolt and B€oornstein, 1992). Materials like W, Mo, V, Cr and Nb (ordered again for decreasing

values of the anisotropy factor Bcub) belong, instead, to the second category, for which b1 < 0 (i.e.,
Bcub < 1).

Young�s modulus can be effectively represented by means of a spherical polar diagram, that is, with a

surface generated by a vector whose length is proportional to the value of Young�s modulus in the direction

pointed by the vector itself.

As an example, function EðnÞ is depicted in Fig. 1, where four representative cases of the circumstance

b1 < 0 (i.e., Bcub < 1) are shown, exhibiting increasing values of the anisotropy factor. Maxima of Young�s
modulus are directed along directions parallel to the edges of a cube. In particular, in Fig. 1(a), an extreme

case is depicted, in order to show how cubic materials (often awkwardly named as quasi-isotropic) might, in

Fig. 1. Cubic system, characterized by parameter b1 < 0 and dimensionless anisotropy factor Bcub < 1: plots of EðnÞ. (a) GeTe–SnTe

(mol% GeTe ¼ 0): b1 ¼ �84:54 (TPa)�1, Bcub ¼ 0:18. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 9:16, s44 ¼ 103:10,

s12 ¼ �0:17. Young�s modulus: Emin ¼ 0:027 GPa and Emax ¼ 0:109 GPa. (b) RbBr (rubidium bromide): b1 ¼ �186:02 (TPa)�1,

Bcub ¼ 0:29. s11 ¼ 33:10, s44 ¼ 262:00, s12 ¼ �4:40 (in (TPa)�1). Emin ¼ 0:010, Emax ¼ 0:030 GPa. (c) Nb (niobium): b1 ¼ �17:60

(TPa)�1, Bcub ¼ 0:50. s11 ¼ 6:56, s44 ¼ 35:20, s12 ¼ �2:29 (in (TPa)�1). Emin ¼ 0:081, Emax ¼ 0:152 GPa. (d) Cr–V (chromium–vana-

dium, Cr–0.67 at.% V): b1 ¼ �2:98 (TPa)�1, Bcub ¼ 0:70. s11 ¼ 2:93, s44 ¼ 9:93, s12 ¼ �0:55 (in (TPa)�1). Emin ¼ 0:255, Emax ¼ 0:341

GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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some instances, exhibit a remarkably anisotropic behavior. There are, however, a few situations (one of

which is that of Tungsten, W) where a cubic material can display a behavior very close to isotropy, namely

when b1 ’ 0 or Bcub ’ 1. The existence of such materials has also been theoretically predicted in literature

(Rychlewski, 2000, 2001). In this case, the polar representation of Young�s modulus approximates the shape
of a sphere.

In Figs. 2–4, several cases for b1 > 0 (or Bhex > 1) are shown, ordered again for increasing values of the

anisotropy factor. The maximum values of Young�s modulus happen to be directed, in this cases, along the

diagonal of a cube. In particular, Fig. 4 highlights behaviors very far from isotropy, and Fig. 4(d) effectively

points out an extreme real situation characterized by a strong anisotropy, close to the limit of material

stability.

Fig. 2. Cubic system, characterized by parameter b1 > 0 and dimensionless anisotropy factor Bcub > 1: plots of EðnÞ. (a) Cu–Au

(copper–gold): b1 ¼ 28:53 (TPa)�1, Bcub ¼ 2:18. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 18:22, s44 ¼ 24:09,

s12 ¼ �8:09. Young�s modulus: Emin ¼ 0:055 GPa and Emax ¼ 0:115 GPa. (b) Pb (lead): b1 ¼ 205:40 (TPa)�1, Bcub ¼ 4:02. s11 ¼ 93:70,

s44 ¼ 68:00, s12 ¼ 43:00 (in (TPa)�1). Emin ¼ 0:011, Emax ¼ 0:040 GPa. (c) Rb (rubidium): b1 ¼ 3235 (TPa)�1, Bcub ¼ 6:18. s11 ¼ 1331,

s44 ¼ 625, s12 ¼ �600 (in (TPa)�1). Emin ¼ 0:0008, Emax ¼ 0:0040 GPa. (d) Cs (cesium): b1 ¼ 4200 (TPa)�1, Bcub ¼ 7:21. s11 ¼ 1676,

s44 ¼ 676, s12 ¼ �762 (in (TPa)�1). Emin ¼ 0:0006, Emax ¼ 0:0036 GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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4. Hexagonal symmetry

The next case corresponds to the hexagonal symmetry class, group C10, which coincides with group C11

in the case of symmetric compliance tensor S (Huo and Del Piero, 1991). This case is representative of the

transversely isotropic mechanical behavior. In this situation, the elasticity tensor is invariant under a re-

flection about a plane P and for any rotation around an axis orthogonal to P. Plane P, and any plane
parallel to it, are therefore planes of elastic isotropy. Without loss of generality, if the plane P is assumed to

coincide with the x1–x2 coordinate plane, and therefore the axis x3 (along which the unit vector e3 lies) is

assumed to be the axis of rotational symmetry, then the matrix structure (9) of tensor S simplifies to the

form:

Fig. 3. Cubic system, characterized by parameter b1 > 0 and dimensionless anisotropy factor Bcub > 1: plots of EðnÞ. (a) Li (lithium):

b1 ¼ 814 (TPa)�1, Bcub ¼ 8:83. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 315, s44 ¼ 104, s12 ¼ �144. Young�s modulus:

Emin ¼ 0:003 GPa and Emax ¼ 0:023 GPa. (b) Al–Ni (aluminum–nickel) (at 63.2% Ni and at 273 K): b1 ¼ 61:02 (TPa)�1, Bcub ¼ 9:05.

s11 ¼ 23:6, s44 ¼ 7:58, s12 ¼ �10:7 (in (TPa)�1). Emin ¼ 0:042, Emax ¼ 0:307 GPa. (c) Cu–Al–Ni (copper–aluminum–nickel) (Cu–14

wt.% Al–4.1 wt.% Ni): b1 ¼ 96:0 (TPa)�1, Bcub ¼ 10:23. s11 ¼ 36:3, s44 ¼ 10:4, s12 ¼ �16:9 (in (TPa)�1). Emin ¼ 0:028, Emax ¼ 0:233

GPa. (d) Cu–Al–Ni (copper–aluminum–nickel) (Cu–14.5 wt.% Al–3.15 wt.% Ni): b1 ¼ 107:9 (TPa)�1, Bcub ¼ 12:12. s11 ¼ 40:2,

s44 ¼ 9:7, s12 ¼ �18:6 (in (TPa)�1). Emin ¼ 0:025, Emax ¼ 0:236 GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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S1111 S1122 S1133 0 0 0 0 0 0

S1122 S1111 S1133 0 0 0 0 0 0

S1133 S1133 S3333 0 0 0 0 0 0

0 0 0 S2323 0 0 S2323 0 0

0 0 0 0 S2323 0 0 S2323 0
0 0 0 0 0 S1111�S1122

2
0 0 S1111�S1122

2

0 0 0 S2323 0 0 S2323 0 0

0 0 0 0 S2323 0 0 S2323 0

0 0 0 0 0 S1111�S1122
2

0 0 S1111�S1122
2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð44Þ

The matrix representation of the Voigt�s reduced compliance coefficients (defined as s11 ¼ S1111 ¼ S2222,
s12 ¼ S1122, s13 ¼ S1133 ¼ S2233, s33 ¼ S3333, s44 ¼ 4S2323 ¼ 4S3131) looks as follows, when is expressed in the
reference system of material symmetry:

Fig. 4. Cubic system, characterized by parameter b1 > 0 and dimensionless anisotropy factor Bcub > 1: plots of EðnÞ. (a) Cu–Al–Ni

(copper–aluminum–nickel) (WQ(10): water quenching at 10 �C): b1 ¼ 118:8 (TPa)�1, Bcub ¼ 13:12. The compliance coefficients (units in

(TPa)�1) are: s11 ¼ 43:7, s44 ¼ 9:8, s12 ¼ �20:6. Young�s modulus: Emin ¼ 0:023 GPa and Emax ¼ 0:244 GPa. (b) Al–Ni (aluminum–

nickel) (at 60% Ni and at 273 K): b1 ¼ 116:49 (TPa)�1, Bcub ¼ 15:02. s11 ¼ 42:3, s44 ¼ 8:31, s12 ¼ �20:10 (in (TPa)�1). Emin ¼ 0:024,

Emax ¼ 0:288 GPa. (c) In–Tl (indium–thallium) (at 28.13% Tl): b1 ¼ 3306 (TPa)�1, Bcub ¼ 28:55. s11 ¼ 1145, s44 ¼ 120, s12 ¼ �568 (in

(TPa)�1). Emin ¼ 0:0009, Emax ¼ 0:0233 GPa. (d) In–Tl (indium–thallium) (at 25% Tl): b1 ¼ 4222 (TPa)�1, Bcub ¼ 34:51. s11 ¼ 1452,

s44 ¼ 126, s12 ¼ �722 (in (TPa)�1). Emin ¼ 0:0007, Emax ¼ 0:0224 GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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s11 s12 s13 0 0 0

s12 s11 s13 0 0 0
s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 2ðs11 � s12Þ

0
BBBBBB@

1
CCCCCCA
: ð45Þ

The positive definiteness of the elastic energy establishes some restrictions on the reduced elastic coefficients

in matrix (45), which are thus constrained by the following inequalities:

s11 > 0; s33 > 0; s44 > 0; �s11 < s12 < s11; ð46Þ

� 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s12

s11

r
< s13 <

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s12

s11

r
: ð47Þ

Young�s modulus is expressed in terms of reduced elastic coefficients sij and of components of unit vector n
through (4), which for transverse isotropy reads:

1

EðnÞ ¼ s11 � ðs11
�

� s33Þn23 þ ð2s11 � 2s13 � s44Þ n21



þ n22
��
n23; ð48Þ

and shows the following features:

1. The elastic compliance coefficient s12, which is relevant to the contraction in transverse isotropy plane, x1–
x2, has no influence on the value of 1=E.

2. As expected, the expression (48) of 1=E reveals an axis of rotational symmetry in the direction x3, which
is perpendicular to the transverse isotropy plane: indeed the components n1 and n2 of the unit vector n
appear only under the form n21 þ n22. As a consequence, the representation of 1=EðnÞ in the three-dimen-
sional space spanned by n1, n2, n3 turns out to be a surface of revolution.

Eq. (48) can be rewritten as:

1

EðnÞ ¼ s11 � a2n23
�

þ b2 n21



þ n22
��
n23: ð49Þ

In expression (49), two material parameters, a2 and b2, have been introduced, and they are defined as:

a2 :¼ s11 � s33; ð50Þ

b2 :¼ 2s11 � 2s13 � s44: ð51Þ
It should be also noticed that quantities a2 and b2 are not sign-restricted. Nevertheless, by virtue of in-

equalities (46)1 and (46)2, the following bounds must be satisfied:

�s33 < a2 < s11: ð52Þ
No bounds can be prescribed for b2, since limit values for s13 do not depend only on s11, but also on s33 and
on s12, as it is clearly seen in inequalities (47), and these last two coefficients are independent of each other.

However, if the condition s13 < 0 is met, as it happens for all materials listed in Landolt and B€oornstein
(1992) then the following lower bound holds for b2:

�s44 < b2:
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By analogy with the cubic case, beside the material parameters a2 and b2 it is possible to define two di-

mensionless anisotropy factors:

Ahex ¼
s11
s33

; ð53Þ

Bhex ¼
2ðs11 � s13Þ

s44
ð54Þ

related to a2 and b2 as follows:

a2 ¼ s33ðAhex � 1Þ; ð55Þ

b2 ¼ s44ðBhex � 1Þ: ð56Þ

Moreover, the bounds (52) imply the positivity of the dimensionless anisotropy factor Ahex; nothing can be

assumed, in general, about Bhex, which is not sign restricted. However, when, as stated above, also the

condition s13 < 0 is satisfied––and, indeed, this is the case for all materials belonging to hexagonal sym-

metry classes the authors are aware of––then it turns out that:

Ahex > 0 and Bhex > 0:

Under these particular circumstances it follows that factor Ahex can be interpreted as a measure of the

anisotropy degree, while Bhex, as already done in the cubic case, as a measure of the relative shear stiffness.

Indeed, by virtue of definition (51) and being Bhex > 0 and s44 > 0, one gets ðs11 � s13Þ > 0. Therefore, the

material parameter b2 allows to distinguish two classes of shear behavior:

b2 > 0 : transversely isotropic material with high relative shear stiffness

b2 < 0 : transversely isotropic material with low relative shear stiffness:

It should be noticed that, by virtue of definitions (50) and (51), in the isotropic case, i.e., when s33 ¼ s11 and
s44 ¼ 2ðs11 � s13Þ, one has a2 ¼ b2 ¼ 0; instead Ahex and Bhex––being genuinely anisotropy-related factors––

reduce to unity in the case of isotropy. They might therefore be thought of as a generalization of the Zener

anisotropy factor (23) used for cubic materials. There is however an important difference: while Bcub is sign-
restricted, the same property is not inherited by Bhex because in general, as already pointed out, no bounds

can be prescribed to b2.

The above-mentioned dimensionless anisotropy factors can be usefully adopted to divide materials into

different classes; however, in view of plotting the loci defined by Eq. (49) (or by its reciprocal), a more

convenient choice of dimensionless parameters is:

A0 :¼ s33
s11

; B0 :¼ 2s13 þ s44
2s11

: ð57Þ

Indeed, a2 and b2 are completely defined by the values of A0, B0 and s11 alone:

a2 ¼ s11ð1� A0Þ; b2 ¼ 2s11ð1� B0Þ; ð58Þ

while both s33 and s44 (i.e., one more parameter) must be specified when reconstructing a2, b2 from Ahex and

Bhex, as shown in (55) and (56).

The Lagrangian function (6), for the transversely isotropic symmetry, can be written in the form:

L ¼ s11 � a2n23
�

þ b2 n21



þ n22
��
n23 þ k n21



þ n22 þ n23 � 1

�
ð59Þ
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and the corresponding explicit stationarity conditions read:

ð�b2n
2
3 þ kÞn1 ¼ 0

ð�b2n
2
3 þ kÞn2 ¼ 0

� 2a2n23 � b2ðn21 þ n22Þ þ k
� �

n3 ¼ 0

n21 þ n22 þ n23 ¼ 1:

8>>><
>>>:

ð60Þ

It is now possible to carry out some assumption on the solutions, and to distinguish three different cases.

First, if n has only one non-vanishing component, that is if n ¼ �e1, or if n ¼ �e2, or even n ¼ �e3, the
following solutions are obtained, respectively:

ð1Þ

n21 ¼ 1

n22 ¼ n23 ¼ 0

k ¼ 0
1

E
¼ s11

8>>>><
>>>>:

ð2Þ

n22 ¼ 1

n21 ¼ n23 ¼ 0

k ¼ 0
1

E
¼ s11

8>>><
>>>:

ð3Þ

n23 ¼ 1

n21 ¼ n22 ¼ 0

k ¼ 2a2

1

E
¼ s11 � a2 ¼ s33:

8>>><
>>>:

ð61Þ

It is easy to check that these solutions automatically satisfy both the admissibility conditions 06 n2i 6 1,
(i ¼ 1, 2, 3) and the positivity condition 1=E > 0.

Conversely, if n shows at the same time two non-vanishing components, that is if n ¼ n2e2 þ n3e3, or
n ¼ n1e1 þ n3e3, or again n ¼ n1e1 þ n2e2, one gets:

ð4Þ

n21 ¼ 0

n22 ¼
b2 � 2a2

2ðb2 � a2Þ

n23 ¼
b2

2ða2 � b2Þ

k ¼ b2
2

2ðb2 � a2Þ
1

E
¼ s11 �

b2
2

4ðb2 � a2Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð5Þ

n21 ¼
b2 � 2a2

2ðb2 � a2Þ
n22 ¼ 0

n23 ¼
b2

2ða2 � b2Þ

k ¼ b2
2

2ðb2 � a2Þ
1

E
¼ s11 �

b2
2

4ðb2 � a2Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6Þ

n21 ¼ c2

n22 ¼ 1� c2

n23 ¼ 0

k ¼ 0
1

E
¼ s11:

8>>>>><
>>>>>:

ð62Þ

Solutions (62) depend, through a2 and b2, on the elastic constants, so that the admissibility of such solutions

is not guaranteed beforehand, but must be carefully checked, and this inspection is more complex than in

the previously studied case of cubic symmetry. In other words, it is necessary to establish those conditions

which must be satisfied by material parameters a2 and b2 in order to obtain solutions which are physically

meaningful (1=E > 0 and 06 n2i , i ¼ 1, 2, 3). To this purpose, in case (6), corresponding to the isotropy

plane, it is straightforward to verify that the positivity of 1=E and the admissibility of n2i (i.e., n
2
1 > 0, n22 > 0)

are met under the condition 0 < c2 < 1.

The analogous proof is less trivial in cases (4) and (5). After some lengthy computations, here omitted, it
can be shown that in cases (4) and (5) (in the latter by exchanging the roles played by n1 and n2) the ad-

missibility conditions are those shown in Table 1, where the definition:

bH

2 :¼ 2s11 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

s11

r �
¼ 2s11 1

�
þ

ffiffiffiffiffi
A0

p �
ð63Þ

has been introduced.
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Finally, in the most general case, that is when n ¼ n1e1 þ n2e2 þ n3e3, the following solution is obtained:

ð7Þ

n1 ¼ c2

n22 ¼
b2 � 2a2

2ðb2 � a2Þ
� c2

n23 ¼
b2

2ðb2 � a2Þ

k ¼ b2
2

2ðb2 � a2Þ
1

E
¼ s11 �

b2
2

4ðb2 � a2Þ
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð64Þ

for any c2 2 ð0; 1Þ. Once again, by omitting the calculations, the admissibility conditions are obtained and

shown in Table 2, where the following shorthand notation has been introduced:

aH

2 :¼ a2

c2 � 1

2c2 � 1
ð65Þ

together with definition (63).

By taking advantage of the afore-mentioned axis of rotational symmetry, when dealing with the surface

(of revolution) defined by Eq. (48) or (49), analysis can be reduced to its intersection with a generic

meridian plane. Indeed, on any plane which (i) is perpendicular to the plane P of transverse isotropy and

(ii) contains the axis of rotational symmetry, x3, a point belonging to the (section of) surface (49) is
completely defined by the spherical polar coordinates: radius, q, longitude (here: angle formed by the

meridian plane with the positive x1-axis), /, and colatitude (here: angle formed by the radius with positive

x3-axis on the meridian plane), h.

Table 2

Hexagonal system: transversely isotropic solid

b2 � a2 a2 � 0 n21 ¼ c2 06 n22, n
2
3 6 1 1

E > 0

b2 > a2 a2 > 0 c2 < 1=2 b2 P 2aH

2 2aH

2 6b2 < bH

2

a2 ¼ 0 c2 6 1=2 b2 > 0 0 < b2 < bH

2

a2 < 0 c2 6 1=2 b2 P 0 06b2 < bH

2

c2 > 1=2 06b2 6 2aH

2 06b2 6 2aH

2 < bH

2

b2 < a2 a2 > 0 c2 > 1=2 2aH

2 6b2 6 0 –

c2 6 1=2 b2 6 0 –

a2 ¼ 0 c2 6 1=2 b2 < 0 –

a2 < 0 c2 < 1=2 b2 6 2aH

2 –

Admissibility conditions for solution (7): Eqs. (64), for which n ¼ n1e1 þ n2e2 þ n3e3.

Table 1

Hexagonal system: transversely isotropic solid

b2 � a2 a2 � 0 06 n22, n
2
3 6 1 1

E > 0

b2 > a2 a2 > 0 b2 P 2a2 2a2 6b2 < bH

2

a2 ¼ 0 b2 > 0 0 < b2 < bH

2

a2 < 0 b2 P 0 06b2 < bH

2

b2 < a2 a2 > 0 b2 6 0 –

a2 ¼ 0 b2 < 0 –

a2 < 0 b2 6 2a2 –

Admissibility conditions for solutions (4) and (5): Eqs. (62)1 and (62)2, for which n ¼ n2e2 þ n3e3 and n ¼ n1e1 þ n3e3, respectively.
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It follows that:

n1 ¼ sin h cos/

n2 ¼ sin h sin/

n3 ¼ cos h;

ð66Þ

so that, by substituting Eqs. (66) into (49) the following expression of 1=E as a function of h only is ob-
tained:

1

EðnÞ ¼
1

EðhÞ ¼ s11 � ða2 cos
2 h þ b2 sin

2 hÞ cos2 h: ð67Þ

Eq. (67) provides a complete description of the generic meridian section of the surface of revolution.
By virtue of mirror symmetry with respect to plane P (i.e., plane x1–x2), analysis may be restricted to the

range 06 h6 p=2. It is then easy to realize that there are always two bounded extrema, the former cor-

responding to h ¼ h1 ¼ 0 (pole), the latter to h ¼ h2 ¼ p=2 (equator). To these points a stationary point

corresponding to the value

h ¼ hH ¼ cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ a2

2ðb2 � a2Þ

s
ð68Þ

must be added, but only if conditions listed in Table 1 or 2 are satisfied.

The corresponding values of 1=E turn out to be:

1

E1

:¼ 1

Eðh1Þ
¼ s33

1

E2

:¼ 1

Eðh2Þ
¼ s11

1

EH

:¼ 1

EðhHÞ
¼ s11 �

b2
2

4ðb2 � a2Þ
¼ s11s33 � ðs13 þ s44=2Þ2

s11 þ s33 � 2s13 � s44
:

ð69Þ

In order to classify the stationary points of 1=E, the following four cases will be separately studied.

(1) b2 > a2 and a2 P 0, i.e., B0 < ð1þ A0Þ=2 and 0 < A0
6 1

Since a2 P 0 it turns out, by (50), 1=E1 6 1=E2, where the equal sign holds only when a2 ¼ 0. In such

conditions, the radius of the surface of revolution measured along the x3 axis (i.e., the polar radius) equals
the value measured on the P plane, (i.e., the equatorial radius); for any other value of a2 the polar radius is

less than the equatorial radius, resulting in an oblate surface of revolution.

According to Eq. (69)3 it is easy to acknowledge that point hH corresponds to an absolute minimum;

however, because of the restrictions listed in Table 1 (or, in Table 2, which provides the same results even
though with some inessential intricacies) the solution is acceptable only within the range

2a2 6 b2 < bH

2 ; ð70Þ

where a strict inequality sign must be substituted in expression (70) when a2 ¼ 0.

When within the range (70) the value of b2 approaches the lower bound, the point hH coincides with h1

and only two distinct stationary points (namely, h1 and h2) survive; if, instead, b2 tends to the upper bound,
the minimum value, which is attained when hH ! ðp=4Þ� moves toward the origin, becoming smaller and

smaller.
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When a2 ¼ 0 this circumstance happens for a value bH

2 ¼ 4s11, corresponding, by virtue of inequalities

(46) and (47), to fixing the values s33 ¼ s12 ¼ s11; s13 ¼ �s11; s44 ¼ 0, thus violating the positive definiteness

of tensor S.

It should be noticed that while b2 increases within the range (70), the extremum point hH moves from h1

in the direction of increasing colatitude angles (i.e., goes down from the pole along a meridian), but can

never go beyond the value h ¼ p=4, as clearly shown by Eq. (68).

The following conclusions might be therefore synthetically drawn:

(a) a2 < b2 < 2a2 (i.e., A0 < B0 < ð1þ A0Þ=2): Function 1=E is monotonically increasing along the meridian

from the pole, where it attains the minimum, s33, to the equator, where it reaches the maximum, s11. It
should be emphasized that this circumstance can never happen if a2 ¼ 0 (i.e., if A0 ¼ 1).

(b) 2a2 6 b2 < bH

2 (i.e., �
ffiffiffiffiffi
A0

p
< B0

6A0): Function 1=E starts from a stationary value s33 (corresponding to
the pole), then decreases along the meridian in order to attain its minimum value 1=EH, corresponding

to point hH, and finally increases, so that the maximum s11 is reached at equator. If a2 ¼ 0 the values of

s11 and s33 turn out to be equal (they are both maxima) and the absolute minimum defined by Eq. (69)3
is always reached when hH ¼ p=4.

(c) b2 P bH

2 (i.e., B0
6 �

ffiffiffiffiffi
A0

p
): This circumstance is not allowable, since it would require values of the elas-

tic compliances which would violate the condition of a positive definite tensor S.

(2) b2 > a2 and a2 < 0, i.e., B0 < ð1þ A0Þ=2 and A0 > 1
Since, this time, a2 < 0 it turns out, by Eq. (50), that 1=E1 > 1=E2.

The polar radius is now greater than the equatorial radius, resulting in a prolate surface of revolution.

According to Eq. (69)3 it can be easily recognized that the stationary point hH is still corresponding to an

absolute minimum. Again the solution is acceptable only if the conditions listed in either Table 1 or Table 2

are fulfilled, i.e., within the range:

06 b2 < bH

2 : ð71Þ

When b2 reaches the lower bound in expression (71), point hH coincides with h2, and only two distinct
stationary points (namely, h1 and h2) remain; on the other hand, when the upper limit is approached by b2,

a vanishing minimum value, corresponding to hH ! ðp=4Þþ is attained.

For a2 ! 0 this happens again for a value bH

2 ¼ 4s11, which would imply, when inequalities (46) and (47)

are considered, s33 ¼ s12 ¼ s11; s13 ¼ �s11; s44 ¼ 0, corresponding to a non-positive-definite elastic com-

pliance tensor S.

It should be noticed that, when b2 is increasing within the range (71), the minimum point, hH goes back up

along themeridian fromtheequator (i.e., fromh ¼ p=2) to thepole,butcannotmovebeyond thevalueh ¼ p=4.
These conditions need to be considered separately:

(a) a2 < b2 < 0 (i.e., 1 < B0 < ð1þ A0Þ=2): Function 1=E is monotonically decreasing along the meridian

from the maximum s33 (corresponding to the pole) to the minimum s11 (when it attains the equator);

this condition, however, may occur only when a2 < 0.

(b) 06b2 < bH

2 (i.e., �
ffiffiffiffiffi
A0

p
< B0

6 1): Function 1=E starts from stationary value s11 (corresponding to the

equator), and decreases––while going back up along the meridian––until it reaches in hH its absolute

minimum, 1=EH. When further decreasing values of h are considered, it starts increasing and attains

its maximum, s33, as soon as it reaches the pole. When a2 ! 0� one finds that s11 approaches the maxi-
mum value, s33, while the absolute minimum occurs, as it is apparent from Eq. (68), for hH ! ðp=4Þþ.

(c) b2 P bH

2 (i.e B0
6 �

ffiffiffiffiffi
A0

p
): This circumstance is again not allowable, since it would require elastic com-

pliance coefficients which would make tensor S non-positive definite.
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(3) b2 < a2 and a2 P 0, i.e., B0 > ð1þ A0Þ=2 and 0 < A0
6 1

Since a2 P 0 it results, like in case 1 above, 1=E1 6 1=E2, where the equal sign holds only when a2 ¼ 0:

again an oblate surface of revolution is obtained.

However, by looking at Eq. (69)3 it turns out that an absolute maximum is now corresponding to the
stationary point hH, provided that the following constraint, descending from Table 1 (or Table 2) is satis-

fied:

b2 6 0; ð72Þ

where a strict inequality must be enforced if a2 ¼ 0.

When the upper bound is approached by b2 in expression (72), point hH according to Eq. (68) coincides

with h2, and only two distinct stationary points (namely, h1 and h2) are left. One should carefully notice,
however, that––differently from cases 1 and 2 above––there are no more lower bounds on b2: it can

therefore decrease boundlessly without violating any restriction ensuring positive definiteness of tensor S.

When b2 decreases within the range (72) the stationary point hH starts moving upwards along the

meridian from the equator (i.e., from h ¼ p=2) but is not allowed to go back up, as prescribed by Eq. (68),

beyond the value h ¼ p=4 (which is approached from above).

These brief conclusions can be drawn:

(a) 0 < b2 < a2 (i.e., ð1þ A0Þ=2 < B0 < 1): Function 1=E is monotonically increasing with h, i.e., moving
downwards along the meridian from the pole (where the minimum s33 is attained) to the equator, where

the maximum, s11 is reached; this circumstance is never possible if a2 ¼ 0.

(b) b2 6 0 (i.e., B0 P 1): Function 1=E starts from stationary value s11 (corresponding to the equator) and,

moving upwards along the meridian, is increasing until point hH, where it reaches its maximum (69)3;

after that it begins to decrease until it reaches the pole, where the minimum value, s33 is attained. When

a2 ¼ 0 it turns out that the values of s11 and s33 coincide (they are both minima), while the absolute

maximum 1=EH is reached when hH ¼ p=4. For any non-vanishing value of a2 the maximum

hH ! ðp=4Þþ for decreasing values of b2, as prescribed by Eq. (68).

(4) b2 < a2 and a2 < 0 i.e., B0 > ð1þ A0Þ=2 and A0 > 1

It results, as in case 2 above, a2 < 0, so that 1=E1 > 1=E2 and a prolate surface of revolution is obtained.

According to Eq. (69)3 the stationary point hH is again, as in case 3 above, an absolute maximum,

provided that restriction deduced from Table 1 (or from Table 2) are enforced, i.e.:

b2 6 2a2; ð73Þ

where it is always a2 < 0.

When b2 approaches the upper bound of constraint (73) point hH coincides with h2 so that only two

distinct stationary points (h2 and h1) are left; however, no lower bounds need to be enforced on b2, which

appears therefore, as in case 3, to be unbounded from below. Moreover, as b2 decreases, the point hH where

maximum is attained starting from the pole (i.e., h ¼ 0) moves downwards along the meridian, according to

Eq. (68) but cannot go beyond the value h ¼ p=4, approaching this value from below.

Only these two circumstances can arise:

(a) 2a2 < b2 < a2 (i.e., ð1þ A0Þ=2 < B0 < A0): Function 1=E is monotonically decreasing along the meridian

ranging from maximum s33 (corresponding to the pole) to minimum s11 (corresponding to the equator).

(b) b2 6 2a2: (i.e., B0 PA0): Function 1=E starts from value s33 (corresponding to the pole), and for increas-

ing values of h (i.e., moving downwards along the meridian) increases until point hH, where it reaches its
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maximum value; afterwards it decreases reaching its minimum, s11, corresponding to the equator. When

a2 ! 0� the values of s33 and s11 tend to become equal (they are both minima), while the maximum,

(a) (b)

(c) (d)

Fig. 5. Hexagonal system, meridian sections of function 1=EðnÞ expressed in dimensionless variables A0 and B0 for 06 h6p=2. (a) Case
1 (b2 > a2 and a2 P 0) A0 ¼ 0:50; B0 ¼ 0:65, 0.15 (from outer to inner). (b) Case 2 (b2 > a2 and a2 < 0) A0 ¼ 2:00; B0 ¼ 1:25, 0.25 (from

outer to inner). (c) Case 3 (b2 < a2 and a2 P 0) A0 ¼ 0:50; B0 ¼ 1:50, 0.75 (from outer to inner). (d) Case 4 (b2 < a2 and a2 < 0)

A0 ¼ 2:00; B0 ¼ 3:00, 1.55 (from outer to inner).
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1=EH, happens to correspond to point hH ¼ p=4. For any non-vanishing value of a2, according to

Eq. (68), point hH ! ðp=4Þ� as b2 decreases.

The meridian section corresponding to the four different cases outlined above (and for both circum-
stances of having two or three stationary points in the range 06 h6 p=2) are depicted in Fig. 5.

When switching from the inverse of Young�s modulus, 1=E, to Young�s modulus, E, the same four cases

presented above occur: the role of maxima and minima are exchanged, while angles preserve their value. It

is indeed:

Emax ¼
1

ð1=EÞmin

; Emin ¼
1

ð1=EÞmax

: ð74Þ

Taking into account Eqs. (69) and (74), the following shorthand notations can be introduced:

E1 :¼ Eðh1Þ ¼
1

s33

E2 :¼ Eðh2Þ ¼
1

s11

EH :¼ EðhHÞ ¼
s11 þ s33 � 2s13 � s44
s11s33 � ðs13 þ s44=2Þ2

:

ð75Þ

The elements of matrix representation of tensor S and those of matrix representation of tensor C are

however linked; in the Voigt�s contracted notation the relevant relations for the hexagonal symmetry are:

s11 ¼
�c213 þ c11c33

ðc11 � c12Þ � 2c213 þ ðc11 þ c12Þc33ð Þ

s12 ¼
c213 � c12c33

ðc11 � c12Þ � 2c213 þ ðc11 þ c12Þc33ð Þ
s13 ¼

c13
2c213 � ðc11 þ c12Þc33

s33 ¼
c11 þ c12

�2c213 þ ðc11 þ c12Þc33

s44 ¼
1

c44
;

ð76Þ

where the following definitions (Nye, 1957; Hearmon, 1961; Sirotin and Chaskolka€ııa, 1984) allow to ex-

press them as tensorial components: c11 ¼ C1111 ¼ C2222, c33 ¼ C3333, c12 ¼ C1122, c13 ¼ C1133 ¼ C2233 and

c44 ¼ C2323 ¼ C3131.

Alternatively, if expressions (76) are used, Eqs. (75) can be rewritten, in terms of stiffness coefficients, as

follows:

E1 ¼
�2c213 þ ðc11 þ c12Þc33

c11 þ c12

E2 ¼
ðc11 � c12Þ � 2c213 þ ðc11 þ c12Þc33


 �
�c213 þ c11c33

EH ¼
4c44 c212 � c211


 �
ðc33 � c44Þ � c213c44 � 2c12c13ðc13 þ c44Þ þ c11 2c213 þ 2c13c44 þ c33c44


 �
 �
�c211c33 þ c12 � 2c213 þ c12c33 � 4c13c44ð Þ þ 2c11 c213 þ 2c13c44 þ 2c244ð Þ :

ð77Þ
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It should be noticed that all five elastic stiffness coefficients c11, c12, c13, c33, c44 enter the expressions (77),

differently from compliance coefficients: only four of them, indeed, define the material response in terms of

Young�s modulus which, as already stated, is not influenced by the coefficient s12 corresponding to the

contraction in the plane of transverse isotropy.
By virtue of Eqs. (75)––or, ad libitum (77)––the four different classes of mechanical behavior for

hexagonal symmetry can be characterized as follows:

(a) (b)

(c) (d)

Fig. 6. Hexagonal system, case 1, characterized by b2 > a2 and a2 P 0. Meridian sections of function EðnÞ expressed in dimensionless

variables A0 and B0 for 06 h6p=2. (a) A0 ¼ 0:10; B0 ¼ �0:20, �0.15, �0.10, �0.05, 0.00, 0.05, 0.10 (from outer to inner). (b) A0 ¼ 0:20;

B0 ¼ �0:35, �0.27, �0.20, �0.10, 0.00, 0.10, 0.20 (from outer to inner). (c) A0 ¼ 0:50; B0 ¼ �0:50, �0.40, �0.20, �0.05, 0.05, 0.25, 0.50

(from outer to inner). (d) A0 ¼ 1:00; B0 ¼ �0:80, �0.60, �0.30, 0.00, 0.30, 0.60, 0.99 (from outer to inner).
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1. b2 > a2 and a2 P 0, i.e., B0 < ð1þ A0Þ=2 and 0 < A0
6 1.

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three

stationary points exist in the range 06 h6 p=2) are depicted in Fig. 6.

b2 B0 Emax hmax Emed hmed Emin hmin

a2 < b2 < 2a2 A0 < B0 < ð1þ A0Þ=2 E1 h1 – – E2 h2

2a2 6 b2 < bH

2 �
ffiffiffiffiffi
A0

p
< B0

6A0 EH hH E1 h1 E2 h2

hmed and Emed in table above represent the third stationary point and the corresponding value of Young�s
modulus, respectively.

Fig. 7. Hexagonal system: plots of EðnÞ for case 1, characterized by b2 > a2 and a2 P 0. (a) WC (tungsten monocarbide). a2 ¼ 0:47,

b2 ¼ 0:97 (TPa)�1, Ahex ¼ 1:388, Bhex ¼ 1:318. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 1:68, s33 ¼ 1:21, s44 ¼ 3:05,

s12 ¼ �0:47, s13 ¼ �0:33. Young�s modulus: Emin ¼ 0:595 GPa and Emax ¼ 0:827 GPa. (b) Tc (technetium): a2 ¼ 0:30 and b2 ¼ 2:50

(TPa)�1. Ahex ¼ 1:103 and Bhex ¼ 1:439. s11 ¼ 3:2, s33 ¼ 2:9, s44 ¼ 5:7, s12 ¼ �1:1 and s13 ¼ �0:9 (in (TPa)�1). Emin ¼ 0:313 GPa and

Emax ¼ 0:402 GPa. (c) MnAs (manganese arsenide): a2 ¼ 16:70 and b2 ¼ 27:00 (TPa)�1. Ahex ¼ 2:796 and Bhex ¼ 1:931. s11 ¼ 26:0,

s33 ¼ 9:3, s44 ¼ 29:0, s12 ¼ �5:0 and s13 ¼ �2:0 (in (TPa)�1). Emin ¼ 0:038 GPa and Emax ¼ 0:120 GPa. (d) Co–Ni (cobalt–nickel):

a2 ¼ 1:05 and b2 ¼ 7:03 (TPa)�1. Ahex ¼ 1:337 and Bhex ¼ 1:520. s11 ¼ 4:17, s33 ¼ 3:12, s44 ¼ 13:51, s12 ¼ �18:8 and s13 ¼ �6:1 (in

(TPa)�1). Emin ¼ 0:240 GPa and Emax ¼ 0:475 GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)

A. Cazzani, M. Rovati / International Journal of Solids and Structures 40 (2003) 1713–1744 1737



Be and BaTiO3 among other materials, are representative of this class; the spherical polar diagram for

some other real material belonging to this class are shown in Fig. 7.

2. b2 > a2 and a2 < 0, i.e., B0 < ð1þ A0Þ=2 and A0 > 1.

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three

stationary points exist in the range 06 h6 p=2) are depicted in Fig. 8.

b2 B0 Emax hmax Emed hmed Emin hmin

a2 < b2 < 0 1 < B0 < ð1þ A0Þ=2 E2 h2 – – E1 h1

06 b2 < bH

2 �
ffiffiffiffiffi
A0

p
< B0

6 1 EH hH E2 h2 E1 h1

(a) (b)

(c) (d)

Fig. 8. Hexagonal system, case 2, characterized by b2 > a2 and a2 < 0. Meridian sections of function EðnÞ expressed in dimensionless

variables A0 and B0 for 06 h6p=2. (a) A0 ¼ 1:00; B0 ¼ �0:50, �0.25, 0.00, 0.25, 0.50, 0.75, 1.00 (from outer to inner). (b) A0 ¼ 2:00;

B0 ¼ �0:85, �0.75, �0.50, �0.25, 0.00, 0.50, 1.00 (from outer to inner). (c) A0 ¼ 5:00; B0 ¼ �1:50, �1.25, �0.75, �0.375, 0.00, 0.35,

1.00 (from outer to inner). (d) A0 ¼ 10:00; B0 ¼ �2:25, �1.50, �0.75, �0.375, 0.00, 0.50, 1.00 (from outer to inner).

1738 A. Cazzani, M. Rovati / International Journal of Solids and Structures 40 (2003) 1713–1744



Cd, Zn and apatite, among other materials, are representative of this class; the spherical polar diagram

for some other real material belonging to this class are shown in Fig. 9.

3. b2 < a2 and a2 P 0, i.e., B0 > ð1þ A0Þ=2 and 0 < A0
6 1.

b2 B0 Emax hmax Emed hmed Emin hmin

0 < b2 < a2 ð1þ A0Þ=2 < B0 < 1 E1 h1 – – E2 h2

b2 6 0 B0 P 1 E1 h1 E2 h2 EH hH

Fig. 9. Hexagonal system: plots of EðnÞ for case 2, characterized by b2 > a2 and a2 < 0. (a) Cd1�xZnx alloy (x¼ 0.018% content of Zn).

a2 ¼ �22:72, b2 ¼ �7:35 (TPa)�1, Ahex ¼ 0:348, Bhex ¼ 0:853. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 12:55,

s33 ¼ 35:62, s44 ¼ 49:78, s12 ¼ �0:662, s13 ¼ �9:76. Young�s modulus: Emin ¼ 0:028 GPa and Emax ¼ 0:080 GPa. (b) BN3 (boron nit-

ride): a2 ¼ �0:09 and b2 ¼ 4:84 (TPa)�1. Ahex ¼ 0:988 and Bhex ¼ 1:314. s11 ¼ 7:26, s33 ¼ 7:35, s44 ¼ 15:4, s12 ¼ �3:98 and s13 ¼ �2:86

(in (TPa)�1). Emin ¼ 0:136 GPa and Emax ¼ 0:165 GPa. (c) Zn (zinc): a2 ¼ �19:48 and b2 ¼ 5:14 (TPa)�1. Ahex ¼ 0:297 and

Bhex ¼ 1:203. s11 ¼ 8:22, s33 ¼ 27:7, s44 ¼ 25:3, s12 ¼ 0:60 and s13 ¼ �7:0 (in (TPa)�1). Emin ¼ 0:036 GPa and Emax ¼ 0:126 GPa. (d)

TiB2 (titanium boride): a2 ¼ �1:36 and b2 ¼ 3:46 (TPa)�1. Ahex ¼ 0:655 and Bhex ¼ 1:865. s11 ¼ 2:58, s33 ¼ 3:94, s44 ¼ 4:00, s12 ¼ �0:99

and s13 ¼ �1:15 (in (TPa)�1). Emin ¼ 0:254 GPa and Emax ¼ 0:510 GPa. (Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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(a) (b)

(d)(c)

Fig. 10. Hexagonal system, case 3, characterized by b2 < a2 and a2 P 0. Meridian sections of function EðnÞ expressed in dimensionless

variables A0 and B0 for 06 h6p=2. (a) A0 ¼ 0:10; B0 ¼ 1:00, 1.50, 2.00, 3.00, 5.00, 8.00, 20.00 (from outer to inner). (b) A0 ¼ 0:20;

B0 ¼ 1:00, 1.50, 2.00, 3.00, 5.00, 8.00, 20.00 (from outer to inner). (c) A0 ¼ 0:50; B0 ¼ 1:00, 1.50, 2.00, 3.00, 5.00, 7.50, 20.00 (from outer

to inner). (d) A0 ¼ 1:00; B0 ¼ 1:01, 1.50, 2.00, 3.00, 5.00, 7.50, 20.00 (from outer to inner).
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Meaningful examples of meridian sections for this class (restricted to the circumstance where all three

stationary points exist in the range 06 h6 p=2) are depicted in Fig. 10.

Representative elements of this class are, among others, Co, Ti, Hf, Y, Mg and ice; the spherical polar

diagram for some other real material belonging to this class are shown in Fig. 11.

4. b2 < a2 and a2 < 0 i.e., B0 > ð1þ A0Þ=2 and A0 > 1.

b2 B0 Emax hmax Emed hmed Emin hmin

2a2 < b2 < a2 ð1þ A0Þ=2 < B0 < A0 E2 h2 – – E1 h1

b2 6 2a2 B0 PA0 E2 h2 E1 h1 EH hH

Fig. 11. Hexagonal system: plots of EðnÞ for case 3, characterized by b2 < a2 and a2 P 0. (a) Mendenhall Glacier ice (at 270 K).

a2 ¼ 19:11, b2 ¼ �79:20 (TPa)�1, Ahex ¼ 1:225, Bhex ¼ 0:763. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 104:2,

s33 ¼ 85:09, s44 ¼ 334:0, s12 ¼ �43:3, s13 ¼ �23:2. Young�s modulus: Emin ¼ 0:006 GPa and Emax ¼ 0:012 GPa. (b) CeF3 (cesium

fluoride): a2 ¼ 2:50 and b2 ¼ �11:48 (TPa)�1. Ahex ¼ 1:486 and Bhex ¼ 0:607. s11 ¼ 7:64, s33 ¼ 5:14, s44 ¼ 29:2, s12 ¼ �3:3 and

s13 ¼ �1:22 (in (TPa)�1). Emin ¼ 0:059 GPa and Emax ¼ 0:195 GPa. (c) RbMnCl3 (rubidium manganese chloride): a2 ¼ 4:90 and

b2 ¼ �287:0 (TPa)�1. Ahex ¼ 1:209 and Bhex ¼ 0:196. s11 ¼ 28:3, s33 ¼ 23:4, s44 ¼ 357:0, s12 ¼ �9:0 and s13 ¼ �6:7 (in (TPa)�1).

Emin ¼ 0:003 GPa and Emax ¼ 0:043 GPa. (d) RbNiCl3 (rubidium nickel chloride): a2 ¼ 15:90 and b2 ¼ �309:60 (TPa)�1. Ahex ¼ 1:807

and Bhex ¼ 0:226. s11 ¼ 35:6, s33 ¼ 19:7, s44 ¼ 400:0, s12 ¼ �4:1 and s13 ¼ �9:6 (in (TPa)�1). Emin ¼ 0:003 GPa and Emax ¼ 0:051 GPa.

(Elastic coefficients taken from Landolt and B€oornstein, 1992.)
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Meaningful examples of meridian sections for this class (restricted to the circumstance where all three
stationary points exist in the range 06 h6 p=2) are depicted in Fig. 12.

Representative elements of this class are, among others, b-quartz, biotite and muscovite; the spherical

polar diagram for some other real material belonging to this class are shown in Fig. 13.

5. Closure

For cubic and transversely isotropic solids the directions along which the Young�s modulus attains

stationary values have been provided. In particular, two different mechanical behaviors for the cubic

symmetry and four different classes for transverse isotropy have been outlined. Such categories of behavior

can be completely described through suitably defined material parameters, depending on the elastic com-

pliances.

It has also been shown that all these classes occur in real materials, and a rather wide selection of the

corresponding surfaces, showing in spherical polar diagrams the directional dependence of EðnÞ, has been
given as well.

(a) (b)

(c) (d)

Fig. 12. Hexagonal system, case 4, characterized by b2 < a2 and a2 < 0. Meridian sections of function EðnÞ expressed in dimensionless

variables A0 and B0 for 06 h6p=2. (a) A0 ¼ 1:00; B0 ¼ 1:01, 1.50, 2.00, 3.00, 5.00, 10.00, 20.00 (from outer to inner). (b) A0 ¼ 2:00;

B0 ¼ 2:00, 2.50, 3.75, 5.00, 10.00, 20.00, 40.00 (from outer to inner). (c) A0 ¼ 5:00; B0 ¼ 5:00, 6.00, 8.00, 12.00, 20.00, 36.00, 100.00

(from outer to inner). (d) A0 ¼ 10:00; B0 ¼ 10:00, 12.00, 16.00, 22.00, 35.00, 50.00, 100.00 (from outer to inner).
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The solution procedure here adopted can be straightforwardly applied also to weaker symmetry classes,

even though an increased number of independent material constants would lead to more involved com-
putations. Conversely, wider and more branched sets of behavioral sub-classes are likely to be generated.

Moreover, the directional dependence of other significant moduli (e.g. shear modulus and Poisson�s ratio)
could be also of interest.
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Fig. 13. Hexagonal system: plots of EðnÞ for case 4, characterized by b2 < a2 and a2 < 0. (a) KAl2Si3AlO10(OH,F)2 (muscovite).

a2 ¼ �12:90, b2 ¼ �67:50 (TPa)�1, Ahex ¼ 0:317, Bhex ¼ 0:176. The compliance coefficients (units in (TPa)�1) are: s11 ¼ 6:0, s33 ¼ 18:9,

s44 ¼ 81:9, s12 ¼ �1:3, s13 ¼ �1:2. Young�s modulus: Emin ¼ 0:016 GPa and Emax ¼ 0:167 GPa. (b) InN (indium nitride): a2 ¼ �2:50

and b2 ¼ �71:80 (TPa)�1. Ahex ¼ 0:793 and Bhex ¼ 0:289. s11 ¼ 9:6, s33 ¼ 12:1, s44 ¼ 101:0, s12 ¼ �2:1 and s13 ¼ �5:0 (in (TPa)�1).

Emin ¼ 0:026 GPa and Emax ¼ 0:104 GPa. (c) Na6Ca(AlSiO4)6CO3 � nH2O (cancrinite): a2 ¼ �0:40 and b2 ¼ �15:60 (TPa)�1.

Ahex ¼ 0:967 and Bhex ¼ 0:625. s11 ¼ 11:9, s33 ¼ 12:3, s44 ¼ 41:6, s12 ¼ �5:37 and s13 ¼ �1:1 (in (TPa)�1). Emin ¼ 0:063 GPa and

Emax ¼ 0:084 GPa. (d) Cd–Mg (cadmium–magnesium alloy): a2 ¼ �4:30 and b2 ¼ �14:30 (TPa)�1. Ahex ¼ 0:849 and Bhex ¼ 0:810.

s11 ¼ 24:2, s33 ¼ 28:5, s44 ¼ 75:1, s12 ¼ �12:0 and s13 ¼ �6:2 (in (TPa)�1). Emin ¼ 0:022 GPa and Emax ¼ 0:041 GPa. (Elastic coeffi-

cients taken from Landolt and B€oornstein, 1992.)
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