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Abstract

For a homogeneous anisotropic and linearly elastic solid, the general expression of Young’s modulus E(n), em-
bracing all classes that characterize the anisotropy, is given. A constrained extremum problem is then formulated for the
evaluation of those directions n at which E(n) attains stationary values. Cubic and transversely isotropic symmetry
classes are dealt with, and explicit solutions for such directions n are provided. For each case, relevant properties of
these directions and corresponding values of the modulus are discussed as well. Results are shown in terms of suitable
combinations of elements of the elastic tensor that embody the discrepancy from isotropy. On the basis of such material
parameters, for cubic symmetry two classes of behavior can be distinguished and, in the case of transversely isotropic
solids, the classes are found to be four. For both symmetries and for each class of behavior, some examples for real
materials are shown and graphical representations of the dependence of Young’s modulus on direction n are given as
well.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The macroscopic mechanical behavior of a solid is strongly conditioned by its microstructural proper-
ties. For most macroscopically isotropic materials which are commonly employed in engineering practice, it
is enough to specify only two elastic coefficients in order to give a complete description of the material.
However, many materials cannot be considered as isotropic; among these (at the microscale level) crystals
and polycrystals, the latter constituted by grains individually anisotropic, or (at macroscale level) com-
posites and fiber reinforced materials. Indeed, many man-made and naturally occurring substances appear
as aggregates of crystals, or polycrystals, with non-random distribution of orientations (texture). In such
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textured polycrystals, also the macroscopic properties are anisotropic, i.e., directionally dependent. In
particular, the anisotropy properties in a polycrystal aggregate depend both on the texture of the poly-
crystal itself and also on the inherent anisotropy of the single-crystal.

The anisotropy of a physical property is generally restricted by certain symmetry considerations, which
partly follow from the symmetry elements of the underlying material structure. Symmetry considerations
are in fact of paramount concern in the treatment of the directionality of material properties.

A basic structural element, common to most materials, is the crystal structure. Thus, the basic form of
structural symmetry in an aggregate is that contained in the crystal structure.

The effects of crystal symmetry are exhaustively covered in Nye (1957) and in Ting (1996).

As far as elasticity is concerned, in anisotropic solids it is then necessary to specify all the independent
elements of the elastic tensor C, whose number can range from 3 (cubic system) to 21 (triclinic system), in
dependence on the elastic symmetries that the solid exhibits (Gurtin, 1972). The macroscopic behavior of a
solid is then strongly related to its anisotropic properties, which can reveal, in some materials, an aniso-
tropy degree decidedly non-negligible and in some cases so extreme to suggest the proximity of material
instability.

Single crystals are classified into 32 classes, on the basis of homogeneous physical properties; it has been
shown (Smith and Rivlin, 1958) that these classes reveal 11 (plus isotropy) different types of elastic energy,
often indicated with the notations %, %>, ..., % (Coleman and Noll, 1964). Then, in linear elasticity, the
11 types of elastic energy reduce to 9 (Huo and Del Piero, 1991) and the relevant anisotropic symmetry
classes to 8, including isotropy (Forte and Vianello, 1996; Chadwick et al., 2001). On the basis of such
classification it is spontaneous to evaluate the behavior of the engineering elastic constants for the various
elastic symmetries.

In the present work, the directional dependence of Young’s modulus is studied with reference to the
strongest elastic symmetries, namely the cubic and transversely isotropic (hexagonal) symmetries. Pio-
neering works in this direction are those by Goens (1933) and Schmid and Boas (1935), where some two-
dimensional representations of the directional dependence of the Young’s modulus and of the shear
modulus, mostly based on experimental investigations, are given. In particular, Schmid and Boas (1935)
from some tests on real materials provide effective pictures of plaster models for the three-dimensional
surface generated by the Young’s modulus.

A few planar analytically deduced drawings similar to the previous ones are also presented by Wooster
(1949). The results are also referenced in classical textbooks (e.g., Nye, 1957). The case of cubic symmetry
has been more recently re-discussed by Hayes and Shuvalov (1988), and some features about the general
behavior of cubic solids are also investigated in Boulanger and Hayes (1995).

The aim of this paper is to theoretically investigate the elastic response of anisotropic solids (cubic and
transversely isotropic ones, in particular), to analytically deduce a rational classification in terms of
Young’s modulus, and to recognize the appearance of such categories among real materials. This approach
could be usefully applied for controlling the mechanical response of man-made materials when stiffness
requirements are of concern.

The problem is formulated, in the most general form, in Section 2 and dealt with as a constrained ex-
tremum problem for the determination of those directions n along which Young’s modulus attains its
stationary values. The formulation is general and expresses £(n) as a function of the components of the unit
vector n, that labels a direction, and of the Cartesian components of the fourth-order elastic tensor. The
problem is equivalent to that, formulated by Ostrowska-Maciejewska and Rychlewski (2001), of finding the
extrema of the stored elastic energy density for a solid under uniaxial tension.

In Section 3, the problem is then specialized to the case of cubic symmetry, where two different categories
of behavior are pointed out, each characterized by the sign of a material parameter f3,, responsible of the
degree of anisotropy. For practical reasons and accepted custom, in what follows, the usual Voigt’s con-
tracted representation of stress, strain and elastic tensors is adopted (Gurtin, 1972). Although this notation
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provides a vector and matrix representation of the tensors which is physically meaningful, it shows,
nonetheless, a loss of tensorial character. An alternative formulation (Walpole, 1984) is also mentioned,
leading to the same results, but the Voigt’s choice is preferred on the basis of its well-established use in
current literature (Nye, 1957; Hearmon, 1961; Fedorov, 1968; Lekhnitskii, 1981; Ting, 1996). For the cubic
case, the sign of the material parameter f3; (or the value of an analogous, but dimensionless, parameter B.,,)
fixes the directions along which the Young’s modulus attains its absolute maxima and minima. It is shown
that these directions can be aligned either with the edges of a cube or along its diagonals. Directions of
relative extrema of E(n) do exist as well and are here characterized. Several examples of real materials,
compounds and alloys corresponding to positive and negative values of material parameter 5, are then
given. Among these real behaviors, the effect on Young’s modulus of some extreme anisotropy degrees is
also shown.

Hexagonal symmetry, and in particular that of a transversely isotropic solid, is then considered in
Section 4. In this case two material parameters, a, and 5, (or their dimensionless counterparts 4p.x and
Biex), are defined and adopted as a measure of the level of anisotropy. In this way, the sign of o, along with
that of the difference (f, — o) allow to distinguish the solutions of the problem in four categories of be-
havior. For each of such classes, it is shown that Young’s modulus attains its extremum values either on the
isotropy plane, or on the isotropy axis or again on the generic parallel of the surface (of revolution)
generated by E(n). Moreover, it is shown that the obtained solutions must be restricted by suitable feasi-
bility conditions on the elastic constants, in order to maintain physical sense. Finally, also for transversely
isotropic solids, all the treated cases are related with real materials, i.e., compounds or alloys that satisfies
the previously obtained conditions. The directional dependence of Young’s modulus is then shown by
means of suitable graphical representations.

Information and data for anisotropic real materials can be easily found in literature, both in classical
texts and tables (Huntington, 1958; Edington, 1974) and in more recent treatises (Kocks et al., 2000; Levy
et al., 2001). Data for the examples presented in this work are checked with these references, but are
principally taken from the largest source of information available (Landolt and Bornstein, 1992).

2. Problem formulation

A linearly elastic, homogeneous and anisotropic solid, with positive definite stored energy, is considered.
The anisotropic elastic character of the material is obviously reflected on Young’s modulus E, which is
therefore a function of direction in the solid. In the following, for any unit vector n, the modulus will be
expressed as the function E = E(n). The problem considered here consists in the evaluation of the behavior
of that function and, in particular, in the explicit computation of those directions n for which E(n) is
stationary, followed by a discussion of these critical points.

The type of elastic anisotropy of the material, that is the symmetry group to which it belongs (Gurtin,
1972), is reflected on the form of the fourth-order elasticity tensor C, here always supposed to be positive
definite.

In order to obtain the explicit expression of Young’s modulus as a function of the direction, the con-
tinuum 1is subjected to a unit dipole acting in the direction defined by the unit vector n. The stress field
corresponding to the unit dipole, in absence of body forces, is given by:

6=n®n (1)
and is associated, through the elasticity law, to the strain field:

€ =S[o] =S[n®n). (2)

In Eq. (2) S = C! indicates the positive definite fourth-order compliance tensor.
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In view of characterizing the relationship which links the stress and the strain fields, in the direction n,
the strain tensor (2) is projected along that direction. The expression which defines Young’s modulus as a
function of direction n follows immediately:

e(n):m:n®n-§[n®n]. (3)
If a Cartesian orthogonal reference frame Ox x,x; is considered, then expression (3) can be written in index
form as:

ﬁ = OQjjnicin;npNy, (4)
where indices i, j, &, k range from 1 to 3, and the usual rule of sum over a repeated subscript is assumed.
Notice that the expression of 1/E(n) corresponds to that of the stored elastic energy (see Ostrowska-
Maciejewska and Rychlewski, 2001) when, as in the present case, a uniaxial stress state of unit modulus is
considered. This allows for the interpretation of the directions corresponding to extrema of Young’s
modulus as directions of maxima and minima for the stored energy function.

In (4) the Sy values represent the Cartesian components of the elastic compliance tensor S in the given
reference frame, and are subjected to some usual restrictions. First, they must be subordinate to the minor
symmetries Sjm = Sj = Siwn resulting from the symmetry of the stress and strain tensors. Secondly, also
the major symmetry S;;x = Su; holds, as a consequence of the requirement that no work be produced by an
elastic material in a closed loading cycle.

In order to evaluate the direction n for which the modulus E(n)—or its reciprocal 1/E(n)—attains ex-
treme values, the following Lagrangian function is introduced:

LnA)=n®n-Snn+in-n—1), (5)

where 4 is a Lagrangian multiplier associated to the constraint n- n = 1 over the unit vector n. In terms of
components, the Lagrangian function is then written as:

g(n,—, i) = Sl ihk i i N + /l(n,-nl- - 1) (6)

The stationarity conditions for the Lagrangian function ¥ are thus:

0ZL(n,2) 0 0L (n;, 1) 0
O or, in index notation Oy (7)
0L (n, 1) 0 0L (ni, 2) 0
oL oL
and can be explicitly written, making use of the symmetries on S, as:
2S,-jhknjnhnk + }J’li = 0
{i’l,‘l’l,‘ —1=0. (8)

In view of more tractable computations, a change of notation is now performed. The need to evaluate the
three-dimensional Hooke’s law, i.e., €;; = S0, in a convenient fashion, results in a number of notational
conventions (Mehrabadi and Cowin, 1990; Nadeau and Ferrari, 1998), that allow to relate the components
of strain, stress and elasticity tensors.
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First, for a full anisotropic solid, the following matrix representation can be constructed:

a11 St Stz Sz Sz Sust Sz Sz Sz Sz €11
() Soi S Spiz Sz Spar Sni Snm Saiz Sa €2
033 Suir S Sz S1as Sum Sniz Snn Snin Sna €33
%3 Suir Sz Sz S23 Sasmr Smiz Sk Swuiz S €23
o3 | = Ssin Sz S3sz Sziz Szimr Sz Sz Sz Sz €1 |- )
o12 S S22 Si2sz S22z Sisr Sz Sz Sz S €12
03 S S22 S333 Sz S S Snxm Sniz S €32
013 St Sz Sizzz Sz Sz Sz S Sz Sy €13
o1 St Saz Sz Sas Suzt Sanz Sz Suniz S €21

Nevertheless, notation (9) does not make use of the minor and major symmetries of tensor S. If these
symmetries are considered, the extended formulation (9) can be abandoned and more convenient repre-
sentations of Hooke’s law are possible, which reduce the size of matrices and vectors. Among these, two are
more widely adopted in the literature. The first, known as Voigt’s notation (Love, 1944), reads:

a1 St Suze Sus 28uxs 2Sumn 25un €11

02 Stz Swm Suz 28503 28031 25nn €2

o3 | _ | Suss o Sos Sma 283 2Sma 2S:n €33 (10)
on3 281123 28003 283323 A4Sz 4833 4Sun 263 |

031 28131 28031 28331 4Sun 4833 453 263

o12 28112 28012 28312 4Snin 4831 4Sin 2ep;

The presence of the multiplicative factor 2 applied to the shearing strains results from the exploitation of
the minor symmetries. Moreover, the position of such a factor allows the stress and strain vectors to assume
physical sense.

A second possible representation, poor of physical meaning but more attractive than the previous one by
virtue of its tensorial properties, is the linear transformation in six dimensions (Walpole, 1984; Rychlewski,
1984):

011 St Stz S1133 V2Sis V2Sis V28 €11

0 Si122 S22 Spiz V2Sms V2Sn3 V2Snn €2

033 _ | Sus: Sx33 Sy V2Sus V2Suyn V2Snn €33 (11)
V262 V2Sis V2503 V2Sus 283 2Sun 28k V2e; |
V203 V2Sis V28031 V2Shy 283 283131 283112 V2es
V20, V2Si V2501 V2Sui 28u1 28w 2Sbn V2e

Note that in last notation the stress and strain tensors have been mapped into the six-dimensional space in
the same manner. The difference between definitions (10) and (11) may appear shallow, but it is not indeed.
It has been proved (Mehrabadi and Cowin, 1990) that the 6 x 6 matrix in (11) contains the components of a
second-order tensor in the six-dimensional space, whereas it is well known (Nye, 1957; Hearmon, 1961;
Fedorov, 1968) that the 6 x 6 matrix in (10) does not contain the components of a second-order tensor, and
must be exclusively understood as a matrix.

However, both in classical and in the majority of modern literature on anisotropic solids, the choice (10)
results to be the most widespread, despite its lack of tensorial character, and therefore it will be also
adopted here. Anyway, this choice does not affect the results which follow.

In view of defining the material symmetries that will be considered in this paper, a special reference
system is introduced. A ‘principal’ reference system for a material symmetry is defined as a system of co-
ordinates in which the elasticity tensor shows the fewest number of independent non-zero components. An
exception is the case of full anisotropy, where this definition is meaningless.
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The material symmetries considered here are two of those symmetries such that, when the solid is
subjected to a unit dipole acting along a material principal direction, no shear strains arise. The material
symmetries fulfilling this requirement are those corresponding to the groups (Coleman and Noll, 1964;
Gurtin, 1972; Huo and Del Piero, 1991): ¥s = %, (cubic symmetry, characterized by three elastic con-
stants), %19 = %1 (hexagonal symmetry, five elastic constants: transverse isotropy), €s (tetragonal, six
elastic constants) and %5 (orthorhombic, nine elastic constants: orthotropy).

In Sections 3 and 4, the behavior of Young’s modulus for cubic and hexagonal material symmetries will
be examined in detail, by following an order where an increasing number of independent elastic material
constants is considered.

3. Cubic symmetry

The cubic case represents the symmetry with the lesser number, 3, of independent elastic constants
among the crystallographic classes, excluding, of course, the case of isotropy. It corresponds to the sym-
metry group % coinciding, in the case of a symmetric S (hyperelasticity), with the symmetry group %-
(Huo and Del Piero, 1991). For the symmetry under investigation, the matrix representation of the elas-
ticity tensor in (9), written in the principal reference system, and taking into account also the symmetries on
S has this simpler form:

St Sz Suz 0 0 0 0 0 0

Stz Sun Suz 0 0 0 0 0 0

S22 Stz Sun 0 0 0 0 0 0
0 0 0 0 Spm 0 0 S 0 | (12)
0 0 0 0 0 S5323 0 0 S5323
0 0 0 0 0 S7323 0 0 S$7323

As explained in Section 2, here and in the following it is preferable to express the components of the elastic
compliance tensor S in the Voigt’s contracted notation which allows to construct, in the principal material
Cartesian reference frame, the elastic matrix in the form:

S11 S12 S12 0 0 0
S12 St Si2 0 0 0
S12 S12 S11 0 0 0

0 0 0 s 0 0/ (13)
0 0 O 0 Sa4 0
0 0 O 0 0 Sa4

where the reduced elastic coefﬁcients are deﬁned as s = S1111 = S2222 = S3333, S12 = S1122 = S1133 = S2233,

S4g = 485303 = 483131 = 451212 (see (10) and Nye, 1957; Hearmon, 1961; Sirotin and Chaskolkaia, 1984).

Having assumed the existence of a positive definite elastic energy, some restrictions must be satisfied by
the components of the reduced matrix (13). Therefore, application of Jordan’s lemma to (13) leads to the
following inequalities:

S11 > 07 (14)

—%<512<S11, (15)
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Sa4 > 0. (16)
In terms of contracted notation, expression (4) for 1/E(n) gives:
1 1 1
mislz +§S44+§<2S11 72S12 7S44)<}’l?+}’lg+l’lg) (17)

which, making use of the identity:
ny +ny+ny =1—2(nin; + ninj + n3n3) (18)
can be rewritten as:
1
E(n)
As Eq. (19) shows, the Young’s modulus for the cubic case depends on all three elastic constants sy, 51, and
s44. For convenience, relation (19) is rewritten in the following form:
1
E(n)

=511 — (2511 — 2512 — Sua) (nfni + nfn% + n%n%) (19)

= su — Pi(nin3 + nin; + m3n3), (20)

where a new coefficient, depending on material properties only,
By =251 — 2510 — Swa (21)

has been defined. Since the eigenvalues of (13) are, as one can easily check, 4, = 4, =s51; —s12, 43 =
s11 + 2s12 and A4 = As = Ag = 544, then the material parameter §; can also be written in this way

By =2/ — 4 (22)

and thus represents an invariant quantity associated with the material. It should be noticed that f3, is related
to the dimensionless Zener anisotropy factor, frequently used in the literature about cubic materials (Zener,
1955; Edington, 1974; Kelly et al., 2000):

2(S11 - 512)
S44

Bcub = (23)

by the following relationship:
ﬁl = S44(Bcub — 1) (24)

It should be also noticed that for f; = 0 (i.e., By, = 1) the isotropic case is recovered. Moreover, the co-
efficient f3; is not sign restricted, but, by virtue of inequalities (14)—(16), it is, in any case, subjected to the
restrictions:

—Sq4 < ﬁl < 3s1;. (25)

Egs. (24) and (25) provide the corresponding bounds on the dimensionless anisotropy factor B,:

0< Bey <31 4 1. (26)
Sa4

Definitions of alternate parameters to B, or to f§; are given in the literature (Nadeau and Ferrari, 2001).
As pointed out there, however, all these parameters assume a range (either bounded or not) of values, where
the isotropic case does correspond to neither the minimum nor to the maximum, but to a point internal
to the range itself: see, for instance, bounds (25) and (26). Therefore, they suffer of a lack of uniqueness
in defining the ‘absolute’ degree of anisotropy. To overcome this ambiguity, Nadeau and Ferrari (2001)
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introduce a new family of anisotropy parameters, valid for all elastic symmetry classes, which vanish in
correspondence to isotropy, and assume otherwise only positive values.

Nevertheless, being a classification of cubic materials the objective of this section, it becomes crucial to
distinguish among different anisotropy-induced behaviors. As it will appear soon, ‘bilateral’ parameters,
like B., and f;, are both effective and precisely needed. Indeed, definition (21) allows for the following
mechanical interpretation.

By virtue of inequalities (14)—(16) one has (s;; — s12) > 0 and s44 > 0; therefore, for relatively low values
of sy44 it follows that §, > 0, while relatively high values of s44 give 5, < 0. This means that the material
parameter f3;, can be thought of as a measure of the relative shear stiffness of the material. In other words,
the following classification holds (see also Pedersen, 1989, for similar definitions referred to orthotropic
bodies in plane elasticity):

f, > 0: cubic material with high relative shear stiffness

pi < 0: cubic material with low relative shear stiffness.
For the cubic symmetry and in contracted notation, the Lagrangian function (6) takes the form:
L = sy — Pi(nin3 + mins + myn3) + A(n} +n3 +n3 — 1) (27)
and the relevant explicit stationarity conditions (8) read:
[—Bi(m3+nd)+2n =0
[ = Bi(mi +m3) + 4] =0
[—ﬁl(nf—i—n%) +i]n3 =0

24 2 2
ny+n;+n;=1

(28)

Eq. (28) provide the necessary conditions for (20) to be stationary. In order to find all the directions
n corresponding to critical points of 1/E(n), let’s define an orthonormal basis {e;,e,,e;} in the three-
dimensional space and denote by ny, ny, n; the components of the unit vector n = nye; + nye, + nsze;. Then,
one can distinguish three different situations.

First, if n is directed along a coordinate axis (i.e., if n = +e;, or n = +e, or n = +e;) then the following
obvious solutions are obtained, respectively:

nm=n=0 nw=n=0 n=m=0
(1) )1,:0 (2) ;Izo 3) ;izo (29)
E:SII E:SII E:SII

and, in these directions, the Young’s modulus attains the same value £ = 1/s;;, in agreement with the
structure of the elastic matrix (13).

Second, if the unit vector n has two non-vanishing components (i.e., if n = nye, + n3e;, or n = nje; + ne;
or n = nje; + mey) it belongs to one of the coordinate planes. The corresponding solutions are, respec-
tively:

=0 nm =0 n3 =0
2 ,_ | 2 ,_ 1 2 1
n2:n3:§ ”1:”325 ”1:’12:5
4) By (5) B 6) ., B (30)
£=3 £=3 )
1_ . b 1B 1_._h
E "4 E "4 E "4
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and the Young’s modulus depends also on the off-diagonal element s;, of (13) and on the shear modulus s44,
through the parameter ;.

It should be noticed that in the last three cases the values of n? (i = 1, 2, 3) are independent of the elastic
constants, and therefore the admissibility conditions 0 < n? < 1 are automatically guaranteed. On the other
hand, the positivity condition on 1/E is a priori satisfied if the parameter f3, is expressed through Eq. (21),
taking into account inequalities (14)—(16). Conversely, the condition 1/E > 0 implies the restriction
p, < 4s11, weaker than the upper bound (25).

Finally, if n is a unit vector generically oriented, with all non-vanishing components (rn = ne; +
nye; + nse;), the solution of (28) reads:

n%zn%zn%zl
2
(7) g:% (31)
1 i
ETN

Once again, the Young’s modulus depends on the elastic parameter s;; and on the anisotropy factor f3,.
Also in this situation, the values n? (i = 1, 2, 3) are independent of the elastic coefficients, and the ad-
missibility conditions 0 < n? < 1 are satisfied by the solution. The positivity condition 1/E > 0 is guaranteed
beforehand if the 5, factor is given through Eq. (21); on the contrary, the request 1/E =5y, — f,/3 >0
implies f5; < 3s1;, which coincides with the upper inequality restraint (25).

In conclusion, assuming i, j, k = 1, 2, 3 with i # j # k, the following statements hold:

1. n} = 1, n; = n; = 0, i.e., if the unit vector n matches in turn each coordinate axis. In this case the solution
corresponds to six stationary points, each according to n; = £1 (i = 1, 2, 3), and the value of Young’s
modulus is such that:

1
E

2. m; =n; =1/2, n; =0, then the unit vector n is directed in turn along the bisectors of each coordinate
plane. Therefore the 12 stationary points are those for which n, = il/\/i n; = :I:l/\/i n, =0,
(i,j,k=1,2,3,i # j # k), and the Young’s modulus is given by:

l—s _&_23"11 + 2512 + S4s
E- V4T 4 ’

3. n} = n; = m; = 1/3; the solutions correspond to the case of unit vector n that trisects each octant of the
coordlnate system. This case produces eight stationary points: n; = £1/+/3, nj==£1/ V3, = £1/V3 (G,
J>k=1,2,3,i+# j# k) and the elastic modulus is such that:

1 By si 2812+ su

E:Sn*?:—g‘ . (34)

= 8115 (32)

(33)

Directions for local extrema of Young’s modulus in solids with cubic symmetry (under uniaxial tension)
have been obtained in a different way, looking for stationary values of the stored elastic energy, by Os-
trowska-Maciejewska and Rychlewski (2001).

From Eqgs. (32)-(34), the solutions can be ordered as follows:

if B, >0 then: 1, > 51, —% > s —%, (35)
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if ﬁl < 0 then: S11 <S117%<S117%. (36)
It is worth noting that in both cases the solutions with 1/E = s1; — f3, /4 (corresponding to the directions of
n that bisect the coordinate planes) are always relative minima or relative maxima, for f; greater or less

than zero, respectively. Consequently, by making use of Egs. (32) and (34), it is possible to assert that:

3
Enax = 2—
B, > 0: S+ 2o + s (37)
min — ;7
1
Enax = —
B, <0: g (38)
™S+ 2510 + Saa

where Epi, = (1 /E)f1 and E.x = (1 /E)f1 Moreover, it can be easily verified that the following relation

max min*

between maximum and minimum values of Young’s modulus holds (see also Hayes and Shuvalov, 1988):

()%
E max E min_ 3 .

The relationships between the elements of matrix representation of tensor S and those of matrix repre-
sentation of tensor C in Voigt’s contracted notation are:

Ci1 —C12
S = ) 39
C%l +cricp — 26‘%2 ( )
C12
S12 = y 40
C%l “+cr1c10 — 26‘%2 ( )
1
S44 = —, 41
” (41)
where the following deﬁnitions hOldI Cl1 = C1111 = C2222 = C3333, Clp = C1122 = C1133 = C2233 and

ca = Cpyp3 = C3131 = Crp12 (Nye, 1957; Hearmon, 1961; Sirotin and Chaskolkaia, 1984). In such a way, Egs.
(37) and (38) can be rewritten, in terms of stiffness coefficients, as:

E - 3(e11 + 2¢12)caa
<> 0- cii+2c1 + caa 4
b E. - (e —cn)(en + 2en2) (42)
min c11 —"—012 b
E (e — cn)(en + 2¢12)
<0: N ¢t e 43
b E. — 3(c11 + 2¢12)caa (43)
el 4+ 201 tew

Therefore, relations (37) and (38) define two categories of materials in the frame of the cubic system. To
the first category, corresponding to the case f; > 0 (that is, when B, > 1) belong metallic materials
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like Pb, Cu, Ag, Au, Pd, Ni, Ge, Al (ordered here for decreasing values of the anisotropy factor B,,),
alkaline metals (Li, Na, K, Rb), Si and C in its crystalline state (diamond) and several compounds and
alloys (Landolt and Bornstein, 1992). Materials like W, Mo, V, Cr and Nb (ordered again for decreasing
values of the anisotropy factor B.) belong, instead, to the second category, for which f, <0 (ie.,
Bcub < 1)

Young’s modulus can be effectively represented by means of a spherical polar diagram, that is, with a
surface generated by a vector whose length is proportional to the value of Young’s modulus in the direction
pointed by the vector itself.

As an example, function E(n) is depicted in Fig. 1, where four representative cases of the circumstance
B < 0(.e., Bap < 1) are shown, exhibiting increasing values of the anisotropy factor. Maxima of Young’s
modulus are directed along directions parallel to the edges of a cube. In particular, in Fig. 1(a), an extreme
case is depicted, in order to show how cubic materials (often awkwardly named as quasi-isotropic) might, in

(c} {d)

Fig. 1. Cubic system, characterized by parameter 5, < 0 and dimensionless anisotropy factor B, < 1: plots of E(n). (a) GeTe-SnTe
(mol% GeTe = 0): B; = —84.54 (TPa)~', B, = 0.18. The compliance coefficients (units in (TPa)~') are: s;; = 9.16, s44 = 103.10,
s12 = —0.17. Young’s modulus: Epi, = 0.027 GPa and En,, = 0.109 GPa. (b) RbBr (rubidium bromide): f; = —186.02 (TPa)~!,
Bawp = 0.29. 51y = 33.10, 544 = 262.00, 51, = —4.40 (in (TPa)™'). Enn = 0.010, Epay = 0.030 GPa. (¢) Nb (niobium): ; = —17.60
(TPa)~!, B = 0.50. 51, = 6.56, s44 = 35.20, 51, = —2.29 (in (TPa)™'). Epin = 0.081, Epue = 0.152 GPa. (d) Cr-V (chromium-vana-
dium, Cr-0.67 at.% V): f; = —2.98 (TPa)™!, Beyp = 0.70. 51, = 2.93, 544 = 9.93, 515 = —0.55 (in (TPa)™"). Epin = 0.255, Epax = 0.341
GPa. (Elastic coefficients taken from Landolt and Bornstein, 1992.)
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Fig. 2. Cubic system, characterized by parameter f, > 0 and dimensionless anisotropy factor B, > 1: plots of E(n). (a) Cu-Au
(copper—gold): B, =28.53 (TPa)~!, B., =2.18. The compliance coefficients (units in (TPa)~!) are: s, = 18.22, sy = 24.09,
s12 = —8.09. Young’s modulus: E, = 0.055 GPa and E,, = 0.115 GPa. (b) Pb (lead): ; = 205.40 (TPa)™!, B, = 4.02. 5, = 93.70,
S44 = 68.00, 5, = 43.00 (in (TPa)™!). Epin = 0.011, Epay = 0.040 GPa. (c) Rb (rubidium): ; = 3235 (TPa)~!, By, = 6.18. sy, = 1331,
Sqq = 625, 513 = —600 (in (TPa)™"). Epin = 0.0008, Epay = 0.0040 GPa. (d) Cs (cesium): f8; = 4200 (TPa)~!, B.,, = 7.21. sy, = 1676,
S44 = 676, 515 = —762 (in (TPa)™"). Epin = 0.0006, E.x = 0.0036 GPa. (Elastic coefficients taken from Landolt and Bornstein, 1992.)

some instances, exhibit a remarkably anisotropic behavior. There are, however, a few situations (one of
which is that of Tungsten, W) where a cubic material can display a behavior very close to isotropy, namely
when f3; >~ 0 or B, ~ 1. The existence of such materials has also been theoretically predicted in literature
(Rychlewski, 2000, 2001). In this case, the polar representation of Young’s modulus approximates the shape
of a sphere.

In Figs. 2-4, several cases for ff; > 0 (or By, > 1) are shown, ordered again for increasing values of the
anisotropy factor. The maximum values of Young’s modulus happen to be directed, in this cases, along the
diagonal of a cube. In particular, Fig. 4 highlights behaviors very far from isotropy, and Fig. 4(d) effectively
points out an extreme real situation characterized by a strong anisotropy, close to the limit of material
stability.
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Fig. 3. Cubic system, characterized by parameter 8, > 0 and dimensionless anisotropy factor B, > 1: plots of £(n). (a) Li (lithium):
B, = 814 (TPa)~!, B.,, = 8.83. The compliance coefficients (units in (TPa)~") are: s;; = 315, s44 = 104, 51 = —144. Young’s modulus:
Enin = 0.003 GPa and E,,x = 0.023 GPa. (b) AI-Ni (aluminum-nickel) (at 63.2% Ni and at 273 K): 8, = 61.02 (TPa)~!, B, = 9.05.
s11 = 23.6, s44 = 7.58, 51 = —10.7 (in (TPa)™"). Epn = 0.042, Epyy = 0.307 GPa. (c) Cu-Al-Ni (copper—aluminum-nickel) (Cu-14
wt.% Al-4.1 wt.% Ni): B; = 96.0 (TPa)™!, By, = 10.23. sy, = 36.3, 544 = 10.4, 5, = —16.9 (in (TPa)™"). Epin = 0.028, Epax = 0.233
GPa. (d) Cu-Al-Ni (copper-aluminum-nickel) (Cu-14.5 wt.% Al-3.15 wt.% Ni): f; = 107.9 (TPa)™!, B, = 12.12. 5, =40.2,
544 = 9.7, 512 = —18.6 (in (TPa)™"). Epin = 0.025, Epax = 0.236 GPa. (Elastic coefficients taken from Landolt and Bornstein, 1992.)

4. Hexagonal symmetry

The next case corresponds to the hexagonal symmetry class, group %9, which coincides with group %,
in the case of symmetric compliance tensor S (Huo and Del Piero, 1991). This case is representative of the
transversely isotropic mechanical behavior. In this situation, the elasticity tensor is invariant under a re-
flection about a plane IT and for any rotation around an axis orthogonal to I1. Plane II, and any plane
parallel to it, are therefore planes of elastic isotropy. Without loss of generality, if the plane IT is assumed to
coincide with the x;—x, coordinate plane, and therefore the axis x; (along which the unit vector e; lies) is
assumed to be the axis of rotational symmetry, then the matrix structure (9) of tensor S simplifies to the
form:
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(c) (d)

Fig. 4. Cubic system, characterized by parameter f; > 0 and dimensionless anisotropy factor B, > 1: plots of E(n). (a) Cu-Al-Ni
(copper—aluminum-nickel) (WQ(10): water quenching at 10 °C): 8, = 118.8 (TPa)~!, B, = 13.12. The compliance coefficients (units in
(TPa)™') are: s1; = 43.7, 544 = 9.8, 515 = —20.6. Young’s modulus: Ep, = 0.023 GPa and E,,,, = 0.244 GPa. (b) Al-Ni (aluminum—
nickel) (at 60% Ni and at 273 K): 8, = 116.49 (TPa)~!, Bey, = 15.02. 511 = 42.3, 544 = 8.31, 515 = —20.10 (in (TPa)™!). Epin = 0.024,
Emax = 0.288 GPa. (c) In-TI (indium-thallium) (at 28.13% TI): 8, = 3306 (TPa)~!, B., = 28.55. 511 = 1145, 544 = 120, 51, = —568 (in
(TPa)™"). Epin = 0.0009, Epax = 0.0233 GPa. (d) In-TI (indium-thallium) (at 25% TI): B, = 4222 (TPa)~!, By, = 34.51. s, = 1452,
s44 = 126, 51 = =722 (in (TPa)™"). Epin = 0.0007, Epay = 0.0224 GPa. (Elastic coefficients taken from Landolt and Bornstein, 1992.)

S Stz Sum 0 0 0 0 0 0
Sz S Sun 0 0 0 0 0 0
Sizz Susz Sz 0 0 0 0 0 0
0 0 0 0 S$7323 0 0 S$2323 0 . (44)
o o0 o0 0 0 wSm o 0 Sz
0 0 0 Su 0 0 Spm 0 0
0 0 0 0 S5323 0 0 S5323 0

0 0 0 0 0 St =S 0 0 S —Su»
2 2

The matrix representation of the Voigt’s reduced compliance coefficients (defined as sy; = Sij11 = Sy,

S = S1122, S13 = S1133 = S2233, S33 = S3333, S44 = 452323 = 4S3131) looks as fOHOWS, when is expressed in the
reference system of material symmetry:
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siposiz osi3 000 0
spposposi3 0000 0
s1i3 813 s 0 0 0
0 0 0 S44 0 0 ’ (45)
0 0 0 0 Saq 0

0 0 0 0 0 2(s;—s1)

The positive definiteness of the elastic energy establishes some restrictions on the reduced elastic coefficients
in matrix (45), which are thus constrained by the following inequalities:

s1u >0, 533 >0, 540 >0, —s11 <812 < 511, (46)

l S12 1 S12
——= sty [ L+ <s1i3 < —=/fsismy /1 +—. 47
\/Z 811533 11 813 \/z 811833 11 ( )

Young’s modulus is expressed in terms of reduced elastic coefficients s;; and of components of unit vector »
through (4), which for transverse isotropy reads:

1

m =811 — [(S” — 533)71% + (2S11 — 2S13 — S44) (I’l% + I’l%)]l’l%, (48)

and shows the following features:

1. The elastic compliance coefficient s;,, which is relevant to the contraction in transverse isotropy plane, x;—
X2, has no influence on the value of 1/E.

2. As expected, the expression (48) of 1/E reveals an axis of rotational symmetry in the direction x3, which
is perpendicular to the transverse isotropy plane: indeed the components n; and n, of the unit vector n
appear only under the form n} + n3. As a consequence, the representation of 1/E(n) in the three-dimen-
sional space spanned by ny, n,, n3 turns out to be a surface of revolution.

Eq. (48) can be rewritten as:

1
) =51 — [oczn§ + By (n} + n%)]n% (49)
In expression (49), two material parameters, o, and f,, have been introduced, and they are defined as:
Oy = 811 — 833, (50)
BZ = 2511 72_5‘13 — S44. (51)

It should be also noticed that quantities «, and f3, are not sign-restricted. Nevertheless, by virtue of in-
equalities (46), and (46),, the following bounds must be satisfied:

—833 < 0y < S871- (52)

No bounds can be prescribed for f3,, since limit values for 513 do not depend only on s;;, but also on s3;3 and
on sy, as it is clearly seen in inequalities (47), and these last two coefficients are independent of each other.
However, if the condition s;3 < 0 is met, as it happens for all materials listed in Landolt and Bornstein
(1992) then the following lower bound holds for f3,:

—Sqq < B2’
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By analogy with the cubic case, beside the material parameters o, and f, it is possible to define two di-
mensionless anisotropy factors:

Ahex :Sla (53)

§33

2 —
B = 2120 (54)

related to o, and f, as follows:
a0 = 533(dnex — 1), (55)

ﬁz = S44(Bhex - 1) (56)

Moreover, the bounds (52) imply the positivity of the dimensionless anisotropy factor A4ye; nothing can be
assumed, in general, about By, which is not sign restricted. However, when, as stated above, also the
condition 513 < 0 is satisfied—and, indeed, this is the case for all materials belonging to hexagonal sym-
metry classes the authors are aware of—then it turns out that:

Apex >0 and By > 0.

Under these particular circumstances it follows that factor Ay can be interpreted as a measure of the
anisotropy degree, while By, as already done in the cubic case, as a measure of the relative shear stiffness.
Indeed, by virtue of definition (51) and being Bpex > 0 and s44 > 0, one gets (s1; — s13) > 0. Therefore, the
material parameter 5, allows to distinguish two classes of shear behavior:

f, > 0: transversely isotropic material with high relative shear stiffness

f, < 0: transversely isotropic material with low relative shear stiffness.

It should be noticed that, by virtue of definitions (50) and (51), in the isotropic case, i.c., when s33 = s;; and
s44 = 2(s11 — $13), one has oy = f§, = 0; instead A4y, and Bp,—being genuinely anisotropy-related factors—
reduce to unity in the case of isotropy. They might therefore be thought of as a generalization of the Zener
anisotropy factor (23) used for cubic materials. There is however an important difference: while B, is sign-
restricted, the same property is not inherited by By, because in general, as already pointed out, no bounds
can be prescribed to f3,.

The above-mentioned dimensionless anisotropy factors can be usefully adopted to divide materials into
different classes; however, in view of plotting the loci defined by Eq. (49) (or by its reciprocal), a more
convenient choice of dimensionless parameters is:

s g 2ty

A == : 57
S11 2811 ( )

Indeed, o, and f, are completely defined by the values of A’, B and s, alone:
a = sn(1 _A/>» By = 2sn(1 _B/)7 (58)

while both s33 and s44 (i.e., one more parameter) must be specified when reconstructing o, 5, from A4y and
Biex, as shown in (55) and (56).
The Lagrangian function (6), for the transversely isotropic symmetry, can be written in the form:

L = su — [ooms + By (n} +n3) |n3 + A(n] + m3 + 3 — 1) (59)
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and the corresponding explicit stationarity conditions read:
(=Panz + 2)m =0
(=Ponz + 2)ny = 0 (60)
[ = 20003 — By(n} +m3) + Alns =0

24 24 2
ny+n;+ny=1

It is now possible to carry out some assumption on the solutions, and to distinguish three different cases.
First, if n has only one non-vanishing component, that is if n = +e;, or if n = +e,, or even n = +es, the
following solutions are obtained, respectively:

n =1 n =1 =1
I’I%:ng:() n%—n%:() n%:n%:()

(D =0 (2) %:0 (3) /}zzfxz (61)
%:su r - Su E:Sn—azzsn-

It is easy to check that these solutions automatically satisfy both the admissibility conditions 0 <n? <1,
(i =1, 2, 3) and the positivity condition 1/E > 0.

Conversely, if n shows at the same time two non-vanishing components, that is if n = nye, + nse3, or
n = nye; + nies, or again n =nie; + nyey, one gets:

n% =0 5,2
— 20,

2 _ b2 n :m

2(ﬁ2 - OCZ) n% =0 n% _ ’))2
I’IZZL nzzL n%:l—yz

@) 0 2 —p) 50" T 20— B) (6] m=0 .
2 2 =0

PR - P 4

2(B, — ) 2(By — o) , I =11
! ﬁg l =S - L
ENTa sy E )

Solutions (62) depend, through o, and f3,, on the elastic constants, so that the admissibility of such solutions
is not guaranteed beforehand, but must be carefully checked, and this inspection is more complex than in
the previously studied case of cubic symmetry. In other words, it is necessary to establish those conditions
which must be satisfied by material parameters o, and f3, in order to obtain solutions which are physically
meaningful (1/E >0 and 0<n?, i =1, 2, 3). To this purpose, in case (6), corresponding to the isotropy
plane, it is straightforward to verify that the positivity of 1/E and the admissibility of n? (i.e., n7 > 0, n3 > 0)
are met under the condition 0 < y* < 1.

The analogous proof is less trivial in cases (4) and (5). After some lengthy computations, here omitted, it
can be shown that in cases (4) and (5) (in the latter by exchanging the roles played by n; and n,) the ad-
missibility conditions are those shown in Table 1, where the definition:

pr = 2s”<1 + /1 °‘2) :2s”(1 +\/Z)
S11

has been introduced.

(63)
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Table 1
Hexagonal system: transversely isotropic solid
By = o % =0 0<n, <1 >0
ﬂ2>062 O(2>0 ﬁ2>2052 20(2</32</3;
=0 B>0 0<p, < By
o <0 =0 0< B, < B3
/32<0C2 o >0 ﬁ2<0 —
o =0 <0 -
o <0 fr <20 -

Admissibility conditions for solutions (4) and (5): Egs. (62); and (62),, for which n = nye, + n3e; and n = ne; + nse;, respectively.

Finally, in the most general case, that is when n = nje; + nye; + nzes, the following solution is obtained:
2

np =y
112 — ﬁz - 20‘2 a2

? 2(f, — )
nw=—t

e 2(B = o) (64)

B

C 2 m)
1_ B
E- " 4(B, — 052)’

for any y* € (0,1). Once again, by omitting the calculations, the admissibility conditions are obtained and
shown in Table 2, where the following shorthand notation has been introduced:

-1
OC; =0 2’))2—_1 (65)
together with definition (63).

By taking advantage of the afore-mentioned axis of rotational symmetry, when dealing with the surface
(of revolution) defined by Eq. (48) or (49), analysis can be reduced to its intersection with a generic
meridian plane. Indeed, on any plane which (i) is perpendicular to the plane IT of transverse isotropy and
(i1) contains the axis of rotational symmetry, x3, a point belonging to the (section of) surface (49) is
completely defined by the spherical polar coordinates: radius, p, longitude (here: angle formed by the
meridian plane with the positive x;-axis), ¢, and colatitude (here: angle formed by the radius with positive
x3-axis on the meridian plane), 6.

Table 2
Hexagonal system: transversely isotropic solid
By o =0 n =12 0<nm, m<1 >0
B, > w o >0 P2 <1/2 By = 20% 20X < By < BF
0w =0 P <1/2 By >0 0<p, < By
w <0 7 <1/2 B, =0 0< By < B3
7 >1/2 0< fy<20F 0<pr <203 <y
By < on o >0 2 >1/2 205 < B, <0 -
7 <1/2 B, <0 -
o =0 2<1/2 B, <0 -
o <0 yr<1/2 By < 2uF -

Admissibility conditions for solution (7): Egs. (64), for which n = nye| + nye; + n;e;.
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It follows that:

n; = sin 0 cos ¢
ny = sin 0sin ¢ (66)
n3 = cosf,

so that, by substituting Egs. (66) into (49) the following expression of 1/E as a function of 0 only is ob-
tained:

1 _ 1 _ 2 -2 2
En) " E(0) s11 — (0p cos” 0 + f3, sin” 0) cos” 0. (67)

Eq. (67) provides a complete description of the generic meridian section of the surface of revolution.
By virtue of mirror symmetry with respect to plane I7 (i.e., plane x;—x;), analysis may be restricted to the
range 0 <6< w/2. It is then easy to realize that there are always two bounded extrema, the former cor-

responding to 6 = 0, = 0 (pole), the latter to 0 = 0, = n/2 (equator). To these points a stationary point
corresponding to the value

1 o
0 = 0y = cos 2+2(ﬁ2—oc2) (68)

must be added, but only if conditions listed in Table 1 or 2 are satisfied.
The corresponding values of 1/E turn out to be:

1 1

E_1 = E(@l) =533

1 1

E, E(0) " )
L — 1 — sy — ﬁ% _ Suss — (s13 +S44/2)2.

Ew  E(0x) 4(fy — ) s11 533 — 2513 — Sy

In order to classify the stationary points of 1/E, the following four cases will be separately studied.

() By >0 and o =0, 1ie., B < (1+4)/2and 0 < 4’ <1

Since a, > 0 it turns out, by (50), 1/E; < 1/E,, where the equal sign holds only when o, = 0. In such
conditions, the radius of the surface of revolution measured along the x3 axis (i.e., the polar radius) equals
the value measured on the IT plane, (i.e., the equatorial radius); for any other value of o, the polar radius is
less than the equatorial radius, resulting in an oblate surface of revolution.

According to Eq. (69); it is easy to acknowledge that point 0, corresponds to an absolute minimum;
however, because of the restrictions listed in Table 1 (or, in Table 2, which provides the same results even
though with some inessential intricacies) the solution is acceptable only within the range

20, < By < B, (70)

where a strict inequality sign must be substituted in expression (70) when o, = 0.

When within the range (70) the value of 3, approaches the lower bound, the point 0, coincides with 0,
and only two distinct stationary points (namely, 0; and 6,) survive; if, instead, f3, tends to the upper bound,
the minimum value, which is attained when 6, — (n/4)” moves toward the origin, becoming smaller and
smaller.
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When o, = 0 this circumstance happens for a value ﬁ;‘ = 451, corresponding, by virtue of inequalities
(46) and (47), to fixing the values s33 = 510 = s11; 513 = —s11; S44 = 0, thus violating the positive definiteness
of tensor S.

It should be noticed that while /3, increases within the range (70), the extremum point 6, moves from 6,
in the direction of increasing colatitude angles (i.e., goes down from the pole along a meridian), but can
never go beyond the value 0 = /4, as clearly shown by Eq. (68).

The following conclusions might be therefore synthetically drawn:

(@) o < P, <20 (ie., A < B < (1+4")/2): Function 1/E is monotonically increasing along the meridian
from the pole, where it attains the minimum, s33, to the equator, where it reaches the maximum, s;;. It
should be emphasized that this circumstance can never happen if o, =0 (i.e., if 4’ = 1).

(b) 20, < B, < [3;‘ (i.e., —V/A4" < B'<A'): Function 1/E starts from a stationary value s3; (corresponding to
the pole), then decreases along the meridian in order to attain its minimum value 1/E, corresponding
to point 6,4, and finally increases, so that the maximum sy, is reached at equator. If &, = 0 the values of
s1; and s33 turn out to be equal (they are both maxima) and the absolute minimum defined by Eq. (69);
is always reached when 0y = n/4.

(©) B, =By (e, B < — V/A'): This circumstance is not allowable, since it would require values of the elas-
tic compliances which would violate the condition of a positive definite tensor S.

2)p, >mand ap <0,ie.,B <(14+4)/2and 4" > 1

Since, this time, o, < 0 it turns out, by Eq. (50), that 1/E, > 1/E,.

The polar radius is now greater than the equatorial radius, resulting in a prolate surface of revolution.

According to Eq. (69); it can be easily recognized that the stationary point 0y is still corresponding to an
absolute minimum. Again the solution is acceptable only if the conditions listed in either Table 1 or Table 2
are fulfilled, i.e., within the range:

0< By < B (71)

When f5, reaches the lower bound in expression (71), point 04 coincides with 6,, and only two distinct
stationary points (namely, 0, and 0,) remain; on the other hand, when the upper limit is approached by f,,
a vanishing minimum value, corresponding to 0y — (n/4)" is attained.

For o, — 0 this happens again for a value ﬁ; = 4sy;, which would imply, when inequalities (46) and (47)
are considered, s33 = 512 = s11; 513 = —s11; sS4 = 0, corresponding to a non-positive-definite elastic com-
pliance tensor S.

It should be noticed that, when f3, is increasing within the range (71), the minimum point, 04 goes back up
along the meridian from the equator (i.e., from 6 = n/2)to the pole, but cannot move beyond the value § = = /4.

These conditions need to be considered separately:

(@) o < f, <0 (ie., 1 <B < (1 +A4")/2): Function 1/E is monotonically decreasing along the meridian
from the maximum s33 (corresponding to the pole) to the minimum s;; (when it attains the equator);
this condition, however, may occur only when o, < 0.

(b) 0<p, < ﬁ;‘ (i.e., —V/A4' < B'<1): Function 1/E starts from stationary value s;; (corresponding to the
equator), and decreases—while going back up along the meridian—until it reaches in 04 its absolute
minimum, 1/E4. When further decreasing values of 0 are considered, it starts increasing and attains
its maximum, s33, as soon as it reaches the pole. When o, — 0~ one finds that s;; approaches the maxi-
mum value, s33, while the absolute minimum occurs, as it is apparent from Eq. (68), for 0y — (n/4)".

©) B, = ﬁ; (i.e B’ < — v/4'): This circumstance is again not allowable, since it would require elastic com-
pliance coefficients which would make tensor S non-positive definite.
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3) B, <opand a; =0,ie.,B > (1+4)/2and 0 < 4 <1

Since o, > 0 it results, like in case 1 above, 1/E| < 1/E,, where the equal sign holds only when o, = 0:
again an oblate surface of revolution is obtained.

However, by looking at Eq. (69); it turns out that an absolute maximum is now corresponding to the

stationary point 04, provided that the following constraint, descending from Table 1 (or Table 2) is satis-
fied:

B, <0, (72)

where a strict inequality must be enforced if oy = 0.

When the upper bound is approached by f3, in expression (72), point 04 according to Eq. (68) coincides
with 60,, and only two distinct stationary points (namely, 6, and 6,) are left. One should carefully notice,
however, that—differently from cases 1 and 2 above—there are no more lower bounds on f3,: it can
therefore decrease boundlessly without violating any restriction ensuring positive definiteness of tensor S.

When f, decreases within the range (72) the stationary point 04 starts moving upwards along the
meridian from the equator (i.e., from 6 = 7/2) but is not allowed to go back up, as prescribed by Eq. (68),
beyond the value 8 = /4 (which is approached from above).

These brief conclusions can be drawn:

(a) 0< f, <o (i.e., (1+4)/2 < B < 1): Function 1/E is monotonically increasing with 0, i.e., moving
downwards along the meridian from the pole (where the minimum ss; is attained) to the equator, where
the maximum, sy, is reached; this circumstance is never possible if o, = 0.

(b) B, <0 (i.e., B = 1): Function 1/E starts from stationary value s, (corresponding to the equator) and,
moving upwards along the meridian, is increasing until point 04, where it reaches its maximum (69);;
after that it begins to decrease until it reaches the pole, where the minimum value, s3; is attained. When
oy = 0 it turns out that the values of s1; and s33 coincide (they are both minima), while the absolute
maximum 1/E, is reached when 04 = n/4. For any non-vanishing value of o, the maximum
Ox — (n/4)" for decreasing values of f3,, as prescribed by Eq. (68).

4) py<opand ay <0ie,B >(14+4")/2and 4" > 1

It results, as in case 2 above, o, < 0, so that 1 /E; > 1/E, and a prolate surface of revolution is obtained.

According to Eq. (69); the stationary point 0, is again, as in case 3 above, an absolute maximum,
provided that restriction deduced from Table 1 (or from Table 2) are enforced, i.e.:

ﬂZ g 2d2a (73)

where it is always o, < 0.

When f, approaches the upper bound of constraint (73) point 0, coincides with 0, so that only two
distinct stationary points (6, and 0,) are left; however, no lower bounds need to be enforced on f,, which
appears therefore, as in case 3, to be unbounded from below. Moreover, as 3, decreases, the point 0, where
maximum is attained starting from the pole (i.e., § = 0) moves downwards along the meridian, according to
Eq. (68) but cannot go beyond the value 8 = /4, approaching this value from below.

Only these two circumstances can arise:

(@) 20 < f, < (ie., (1 +4")/2 < B < A"): Function 1/E is monotonically decreasing along the meridian
ranging from maximum s3; (corresponding to the pole) to minimum sy (corresponding to the equator).
(b) B, <20: (i.e., B = A'): Function 1/E starts from value s3; (corresponding to the pole), and for increas-
ing values of 0 (i.e., moving downwards along the meridian) increases until point 04, where it reaches its
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Fig. 5. Hexagonal system, meridian sections of function 1/E(n) expressed in dimensionless variables 4’ and B’ for 0 < 0 < n/2. (a) Case
1 (f, > oy and oy = 0) A’ = 0.50; B’ = 0.65, 0.15 (from outer to inner). (b) Case 2 (8, > o and oy < 0) 4’ = 2.00; B' = 1.25, 0.25 (from
outer to inner). (c) Case 3 (ff, < oy and o, = 0) 4" = 0.50; B = 1.50, 0.75 (from outer to inner). (d) Case 4 (ff, < o and a, < 0)
A" =2.00; B = 3.00, 1.55 (from outer to inner).

maximum value; afterwards it decreases reaching its minimum, s;;, corresponding to the equator. When
oy — 0~ the values of s33 and s1; tend to become equal (they are both minima), while the maximum,
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1/Ex, happens to correspond to point 04 = n/4. For any non-vanishing value of o,, according to
Eq. (68), point 04 — (n/4)” as f, decreases.

The meridian section corresponding to the four different cases outlined above (and for both circum-
stances of having two or three stationary points in the range 0 < 6 < 7/2) are depicted in Fig. 5.

When switching from the inverse of Young’s modulus, 1/E, to Young’s modulus, £, the same four cases
presented above occur: the role of maxima and minima are exchanged, while angles preserve their value. It
is indeed:

1 1

Enax = ) Enin = 7. (74)
(I/E)min (I/E)max
Taking into account Egs. (69) and (74), the following shorthand notations can be introduced:
1
E1 = E(@]) = —
533
1
Ez = E(Qz) = (75)
S11
—Dgia —
Ey = E(04) = S11 + 8§33 — 2813 — S44

s11833 — (513 +S44/2)2.

The elements of matrix representation of tensor S and those of matrix representation of tensor C are
however linked; in the Voigt’s contracted notation the relevant relations for the hexagonal symmetry are:

G = —0%3 + cri¢33
1n=
(e11 — e)(—2¢iy + (en + cn)ess)
Gy — 0%3 — C12C33
1=
(e11 —en)(—2c + (en + cin)ess)
C13
§13 = (76)
20%3 —(c11 +c2)ess
- Ci+Ci2
33 =
—20%3 + (e + cr2)ess
1
S44 = —,
Cyq

where the following definitions (Nye, 1957; Hearmon, 1961; Sirotin and Chaskolkaia, 1984) allow to ex-
press them as tensorial components: Cl1 = C1111 = C2222, C33 = C3333, Cip = C1122, Ci3 = C1133 = C2233 and
cas = Cozpz = Cipa1.

Alternatively, if expressions (76) are used, Egs. (75) can be rewritten, in terms of stiffness coefficients, as
follows:

—2Cf3 + (c11 +cn)ess

E =
¢+ ci2
(e — Clz)( —2¢iy + (en + 012)6’33)
E, = 5 (77)
—C13 T C11633
E, — 4044((6%2 - C%])(CB —Caq) — 0%3644 — 2cppe13(er3 + caa) + € (26%3 + 2ci3c44 + 033044))

2 2 2 2
—C11€33 -+ 012( — 2013 + cpc33 — 40136‘44) + 2011(6’13 + 2013044 + 2044)
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It should be noticed that all five elastic stiffness coefficients ¢y, ¢1», ¢13, €33, Ca4 enter the expressions (77),
differently from compliance coefficients: only four of them, indeed, define the material response in terms of
Young’s modulus which, as already stated, is not influenced by the coefficient s, corresponding to the
contraction in the plane of transverse isotropy.

By virtue of Egs. (75)—or, ad libitum (77)—the four different classes of mechanical behavior for
hexagonal symmetry can be characterized as follows:

X3 X3
25 25
20 20
15 15
10 10
5 5
X1 X1
10 15 20 25 10 15 20 25
@ (b)
X3 X3
10 10
8 8
6 6
4 4
2 2
X1 X1
4 6 8 10 4 6 8 10
(© (d)

Fig. 6. Hexagonal system, case 1, characterized by f, > o, and o, > 0. Meridian sections of function E(n) expressed in dimensionless
variables 4’ and B’ for 0 <0< /2. (a) A = 0.10; B' = —0.20, —0.15, —0.10, —0.05, 0.00, 0.05, 0.10 (from outer to inner). (b) 4" = 0.20;
B' = —0.35, —0.27, —0.20, —0.10, 0.00, 0.10, 0.20 (from outer to inner). (c) 4’ = 0.50; B" = —0.50, —0.40, —0.20, —0.05, 0.05, 0.25, 0.50
(from outer to inner). (d) 4" = 1.00; B' = —0.80, —0.60, —0.30, 0.00, 0.30, 0.60, 0.99 (from outer to inner).
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l. > and o, > 0,1e,B < (1+4")/2and 0 < 4'< 1.

ﬁz B Emax emax Emed emed Emin Hmin
0%} <ﬂ2<2062 A < B < (1+A/)/2 E, 0, - — E, 0,
20(2 < ﬁZ < ﬂ; —\/1—4—/ < B <A/ E* 0* El 01 E2 02

Omea and Epeq In table above represent the third stationary point and the corresponding value of Young’s
modulus, respectively.

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three
stationary points exist in the range 0 < 0 < 7/2) are depicted in Fig. 6.

(©) (d)

Fig. 7. Hexagonal system: plots of E(n) for case 1, characterized by 8, > o, and o, > 0. (a) WC (tungsten monocarbide). a, = 0.47,
B, =0.97 (TPa)™!, Apex = 1.388, Buex = 1.318. The compliance coefficients (units in (TPa)~') are: s;; = 1.68, s33 = 1.21, s44 = 3.05,
s12 = —0.47, 513 = —0.33. Young’s modulus: E,;, = 0.595 GPa and E,,,x = 0.827 GPa. (b) Tc (technetium): o, = 0.30 and f, = 2.50
(TPa)™!. Apex = 1.103 and Byex = 1.439. 51 = 3.2, 533 = 2.9, 544 = 5.7, 51 = —1.1 and s;3 = —0.9 (in (TPa)™"). Epi, = 0.313 GPa and
Epnax = 0.402 GPa. (c) MnAs (manganese arsenide): o, = 16.70 and f8, = 27.00 (TPa)~'. 4y, = 2.796 and By, = 1.931. sy, = 26.0,
533 = 9.3, 544 = 29.0, 515 = —5.0 and 5,3 = —2.0 (in (TPa)™!). Epin = 0.038 GPa and En,, = 0.120 GPa. (d) Co-Ni (cobalt-nickel):
oy = 1.05 and B, = 7.03 (TPa)™'. Apex = 1.337 and By, = 1.520. sy; = 4.17, 533 = 3.12, 544 = 13.51, 51 = —18.8 and 513 = —6.1 (in
(TPa)™'). Epin = 0.240 GPa and E,, = 0.475 GPa. (Elastic coefficients taken from Landolt and Bérnstein, 1992.)
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Be and BaTiO; among other materials, are representative of this class; the spherical polar diagram for
some other real material belonging to this class are shown in Fig. 7.

2., >0 and ap < 0,ie,B <(1+4)/2and 4" > 1.

ﬁz B Emax Hmax Emed emed Emin gmin
062<ﬁ2<0 1<B,<(1+A,)/2 E, 0, — - E, 0,
0<p <py VA <B<I Ex O E, 0, E 0,

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three
stationary points exist in the range 0 < 0 < n/2) are depicted in Fig. 8.
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Fig. 8. Hexagonal system, case 2, characterized by f/, > o, and o, < 0. Meridian sections of function E(n) expressed in dimensionless
variables 4" and B’ for 0 <0< n/2. (a) 4' = 1.00; B' = —0.50, —0.25, 0.00, 0.25, 0.50, 0.75, 1.00 (from outer to inner). (b) 4" = 2.00;
B =-0.85, —0.75, —0.50, —0.25, 0.00, 0.50, 1.00 (from outer to inner). (c) 4’ = 5.00; B = —1.50, —1.25, —0.75, —0.375, 0.00, 0.35,
1.00 (from outer to inner). (d) 4’ = 10.00; B = —2.25, —1.50, —0.75, —0.375, 0.00, 0.50, 1.00 (from outer to inner).
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(b)

(d)

Fig. 9. Hexagonal system: plots of E(n) for case 2, characterized by , > a, and o, < 0. (a) Cd,_,Zn, alloy (x=0.018% content of Zn).
oy = —22.72, B, = —7.35 (TPa)™!, Apex = 0.348, Bpex = 0.853. The compliance coefficients (units in (TPa)™!) are: s;; = 12.55,
533 = 35.62, 544 = 49.78, 51, = —0.662, 513 = —9.76. Young’s modulus: E,;, = 0.028 GPa and E,,,x = 0.080 GPa. (b) BN; (boron nit-
ride): Oy = —0.09 and ﬂZ =4.84 (TPa)". Ahex =0.988 and Bhex =1.314. S = 726, 8§33 = 735, S44 = 154, S12 = —3.98 and S13 = —2.86
(in (TPa)™"). Epn =0.136 GPa and En, =0.165 GPa. (c) Zn (zinc): oy = —19.48 and f, = 5.14 (TPa)™'. Ap, = 0.297 and
Bhex = 1.203. 51, = 8.22, 533 = 27.7, 544 = 25.3, 515 = 0.60 and s;3 = —7.0 (in (TPa)™"). Epin = 0.036 GPa and E,, = 0.126 GPa. (d)
TiB, (titanium boride): o, = —1.36 and B, = 3.46 (TPa)~!. Apex = 0.655 and Byex = 1.865. 51, = 2.58, 533 = 3.94, 544 = 4.00, 51, = —0.99
and sy3 = —1.15 (in (TPa)™"). Epi, = 0.254 GPa and E,, = 0.510 GPa. (Elastic coefficients taken from Landolt and Bornstein, 1992.)

Cd, Zn and apatite, among other materials, are representative of this class; the spherical polar diagram
for some other real material belonging to this class are shown in Fig. 9.

3. b <wmand op =0,1ie,B > (1+4")/2and 0 <4’ < 1.

ﬁ 2 B E max Bmax Emed Hmed Emin emin

0<ﬁ2<012 (1+A/)/2<Bl<l E; 0, — - E, 0,
By <0 B>1 E 0, E 0, Ex Ox
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Fig. 10. Hexagonal system, case 3, characterized by f§, < o, and a, > 0. Meridian sections of function E(n) expressed in dimensionless
variables 4’ and B’ for 0<0< /2. (a) 4 =0.10; B = 1.00, 1.50, 2.00, 3.00, 5.00, 8.00, 20.00 (from outer to inner). (b) 4’
B’ =1.00, 1.50, 2.00, 3.00, 5.00, 8.00, 20.00 (from outer to inner). (c) 4" = 0.50; B’ = 1.00, 1.50, 2.00, 3.00, 5.00, 7.50, 20.00 (from outer

to inner). (d) 4" = 1.00; B = 1.01, 1.50, 2.00, 3.00, 5.00, 7.50, 20.00 (from outer to inner).
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(b)

Fig. 11. Hexagonal system: plots of E(n) for case 3, characterized by f, < o, and o, > 0. (a) Mendenhall Glacier ice (at 270 K).
oy = 19.11, B, = —79.20 (TPa)™!, Apex = 1.225, Bpex = 0.763. The compliance coefficients (units in (TPa)™!) are: s, = 104.2,
533 = 85.09, 544 = 334.0, 510 = —43.3, 513 = —23.2. Young’s modulus: Ey;, = 0.006 GPa and E,, = 0.012 GPa. (b) CeF; (cesium
fluoride): o, =2.50 and B, = —11.48 (TPa)™'. Apex = 1.486 and By = 0.607. sy = 7.64, s33 = 5.14, 544 =29.2, 515 = —3.3 and
s13 = —1.22 (in (TPa)™'). Enyn = 0.059 GPa and E,, = 0.195 GPa. (c) RbMnCl; (rubidium manganese chloride): o, = 4.90 and

, = —287.0 (TPa)™!. Apex = 1.209 and By, = 0.196. 51, = 28.3, 533 = 23.4, 544 = 357.0, 51 = —9.0 and s;3 = —6.7 (in (TPa)™!).
Emin = 0.003 GPa and E,,,, = 0.043 GPa. (d) RbNiCl; (rubidium nickel chloride): & = 15.90 and f, = —309.60 (TPa)~'. 4}, = 1.807
and Bpe, = 0.226. 51, = 35.6, 533 = 19.7, 544 = 400.0, 51 = —4.1 and 513 = —9.6 (in (TPa)™!). Epin = 0.003 GPa and Ey, = 0.051 GPa.
(Elastic coefficients taken from Landolt and Bornstein, 1992.)

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three
stationary points exist in the range 0 < 0 < 7/2) are depicted in Fig. 10.

Representative elements of this class are, among others, Co, Ti, Hf, Y, Mg and ice; the spherical polar
diagram for some other real material belonging to this class are shown in Fig. 11.

4. f, <oy and a; < 0ie., B > (14+4")/2and 4" > 1.

ﬂ 2 B E max Gmax Emed emed Emin emin

20 <ﬁ2<062 (1+Al)/2<BI<AI E, 0, — - E, 0,
By <2 B =4 E, 0, E, 0, Ex Ox
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Fig. 12. Hexagonal system, case 4, characterized by f§, < o, and a, < 0. Meridian sections of function E(n) expressed in dimensionless
variables 4’ and B’ for 0<0< /2. (a) 4 =1.00; B' = 1.01, 1.50, 2.00, 3.00, 5.00, 10.00, 20.00 (from outer to inner). (b) 4’ = 2.00;
B’ =2.00, 2.50, 3.75, 5.00, 10.00, 20.00, 40.00 (from outer to inner). (c) 4" = 5.00; B' = 5.00, 6.00, 8.00, 12.00, 20.00, 36.00, 100.00
(from outer to inner). (d) 4’ = 10.00; B’ = 10.00, 12.00, 16.00, 22.00, 35.00, 50.00, 100.00 (from outer to inner).

Meaningful examples of meridian sections for this class (restricted to the circumstance where all three
stationary points exist in the range 0 < 6 < n/2) are depicted in Fig. 12.

Representative elements of this class are, among others, ff-quartz, biotite and muscovite; the spherical
polar diagram for some other real material belonging to this class are shown in Fig. 13.

5. Closure

For cubic and transversely isotropic solids the directions along which the Young’s modulus attains
stationary values have been provided. In particular, two different mechanical behaviors for the cubic
symmetry and four different classes for transverse isotropy have been outlined. Such categories of behavior
can be completely described through suitably defined material parameters, depending on the elastic com-
pliances.

It has also been shown that all these classes occur in real materials, and a rather wide selection of the
corresponding surfaces, showing in spherical polar diagrams the directional dependence of E(n), has been
given as well.
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(d)

Fig. 13. Hexagonal system: plots of E(n) for case 4, characterized by f, < , and o, < 0. (a) KALSi;AlO;((OH,F), (muscovite).
oy = —12.90, B, = —67.50 (TPa)~!, Apex = 0.317, By = 0.176. The compliance coefficients (units in (TPa)~') are: 51, = 6.0, s33 = 18.9,
sqs = 81.9, 510 = —1.3, 513 = —1.2. Young’s modulus: E;, = 0.016 GPa and Ey,,, = 0.167 GPa. (b) InN (indium nitride): o, = —2.50
and f, = —71.80 (TPa)™'. Apex = 0.793 and Byex = 0.289. 51y = 9.6, 533 = 12.1, 544 = 101.0, 51, = —2.1 and s13 = —5.0 (in (TPa)~').
Enin = 0.026 GPa and E,. =0.104 GPa. (c) NagCa(AlSiO4)sCO; - nH,O (cancrinite): o, = —0.40 and f, = —15.60 (TPa)~'.
Apex = 0.967 and Bpe, = 0.625. s1; = 11.9, 533 = 12.3, 544 = 41.6, 51 = —5.37 and s;3 = —1.1 (in (TPa)™'). Epn = 0.063 GPa and
Enax = 0.084 GPa. (d) Cd-Mg (cadmium-magnesium alloy): o = —4.30 and f, = —14.30 (TPa)™'. Ay = 0.849 and By, = 0.810.
511 =242, 533 =28.5, 544 = 75.1, s1p = —12.0 and 53 = —6.2 (in (TPa)™!). Epyy = 0.022 GPa and E,.x = 0.041 GPa. (Elastic coeffi-
cients taken from Landolt and Bornstein, 1992.)

The solution procedure here adopted can be straightforwardly applied also to weaker symmetry classes,
even though an increased number of independent material constants would lead to more involved com-
putations. Conversely, wider and more branched sets of behavioral sub-classes are likely to be generated.
Moreover, the directional dependence of other significant moduli (e.g. shear modulus and Poisson’s ratio)
could be also of interest.
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